INFORMAZIONI SU QUESTO ARTICOLO

Cita

Jain, T., Kumar, H. & Dutta, P.K. (2016). D-Glucosamine and N-Acetyl D-Glucosamine: Their Potential Use as Regenerative Medicine. In P. K. Dutta (Ed.), Chitin and Chitosan for Regenerative Medicine (pp. 279–295). Springer. Search in Google Scholar

Sampoorna, M., Mahender, M. & Bhavani, S.V. (2020). ORTHOLORD TABLETS: A Blend of Natural Ingredients Provides Nutritional Support for Joint Health. Asian J. Appl. Sci. Technol. 4(2), 17–36. DOI: 10.38177/AJAST.2020.4204. Search in Google Scholar

Kantor, E.D., Lampe, J.W., Navarro, S.L., Song, X., Milne, G.L. & White, E. (2014). Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J. Altern. Complement. Med. 20(6), 479–485. DOI: 10.1089/acm.2013.0323. Search in Google Scholar

Wu, S., Dai, X., Shilong, F., Zhu, M., Shen, X., Zhang, K. & Li, S. (2018). Antimicrobial and antioxidant capacity of glucosamine-zinc (II) complex via non-enzymatic browning reaction. Food Sci. Biotechnol. 27(1), 1–7. DOI: 10.1007/s10068-017-0192-1. Search in Google Scholar

Shekhar, S., Sharma, R., Sharma, S., Sharma, B., Sarkar, A. & Jain, P. (2020). An exploration of electrocatalytic analysis and antibacterial efficacy of electrically conductive poly (D-glucosamine)/graphene oxide bionanohybrid. Carbohydr. Polym. 240, 1–13. DOI: 10.1016/j.carbpol.2020.116242. Search in Google Scholar

Chesnokov, V., Gong, B., Sun, C. & Itakura, K. (2014). Anti-cancer activity of glucosamine through inhibition of N-linked glycosylation. Cancer Cell Int. 14(1), 1–10. DOI: 10.1186/1475-2867-14-45. Search in Google Scholar

Saengnipanthkul, S., Waikakul, S., Rojanasthien, S., Totemchokchyakarn, K., Srinkapaibulaya, A., Cheh Chin, T., Mai Hong, N., Bruyère, O., Cooper, C. & Reginster, J.Y. (2019). Differentiation of patented crystalline glucosamine sulfate from other glucosamine preparations will optimize osteoarthritis treatment. Int. J. Rheum. Dis., 22(3), 376–385. DOI: 10.1111/1756-185X.13068. Search in Google Scholar

Zahedipour, F., Dalirfardouei, R., Karimi, G. & Jamialahmadi, K. (2017). Molecular mechanisms of anticancer effects of Glucosamine. Biomed. Pharmacother. 95, 1051–1058. DOI: 10.1016/j.biopha.2017.08.122. Search in Google Scholar

Towheed, T., Maxwell, L., Anastassiades, T.P., Shea, B., Houpt, J., Welch, V., Hochberg, M.C. & Wells, G.A. (2005). Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst. Rev. (2), 1–58. DOI: 10.1002/14651858.CD002946.pub2. Search in Google Scholar

Altman, R.D. (2009). Glucosamine therapy for knee osteoarthritis: pharmacokinetic considerations. Expert Rev. Clin. Pharmacol. 2(4), 359–371. DOI: 10.1586/ecp.09.17. Search in Google Scholar

Amarase, C., Tanavalee, A., Jumroonwong, W., Tanavalee, C., Tantavisut, S. & Ngarmukos, S. (2018). Patients’ Real Life Experience in Using Glucosamine Sulfate for Treatment of Knee Osteoarthritis Under The Comptroller General’s Department (CGD) Reimbursement Protocol: A Preliminary Report. J. Med. Assoc. Thai., 101(3), 223–230. Search in Google Scholar

Meulyzer, M., Vachon, P., Beaudry, F., Vinardell, T., Richard, H., Beauchamp, G. & Laverty, S. (2008). Comparison of pharmacokinetics of glucosamine and synovial fluid levels following administration of glucosamine sulphate or glucosa-mine hydrochloride. Osteoarthr. Cartil. 16(9), 973–979. DOI: 10.1016/j.joca.2008.01.006. Search in Google Scholar

Bruyere, O., Pavelka, K., Rovati, L.C., Deroisy, R., Olejarova, M., Gatterova, J., Giacovelli, G. & Reginster, J.-Y. (2004). Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies. Menopause, 11(2), 138–143. DOI: 10.1097/01.gme.0000087983.28957.5d. Search in Google Scholar

Tenti, S., Giordano, N., Mondanelli, N., Giannotti, S., Maheu, E. & Fioravanti, A. (2020). A retrospective observational study of glucosamine sulfate in addition to conventional therapy in hand osteoarthritis patients compared to conventional treatment alone. Aging. Clin. Exp. Res., 32, 1161–1172. DOI: 10.1007/s40520-019-01305-4. Search in Google Scholar

Veronese, N., Ecarnot, F., Cheleschi, S., Fioravanti, A. & Maggi, S. (2022). Possible synergic action of non-steroidal anti-inflammatory drugs and glucosamine sulfate for the treatment of knee osteoarthritis: a scoping review. BMC Musculoskelet. Disord. 23(1), 1–9. DOI: 10.1186/s12891-022-06046-6. Search in Google Scholar

Mojarrad, J.S., Nemati, M., Valizadeh, H., Ansarin, M. & Bourbour, S. (2007). Preparation of Glucosamine from Exoskeleton of Shrimp and Predicting Production Yield by Response Surface Methodology. J. Agric. Food Chem. 55, 2246–2250. DOI: 10.1021/jf062983a. Search in Google Scholar

Elieh Ali Komi, D., Sharma, L. & Dela Cruz, C.S. (2018). Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 54(2), 213–223. DOI: 10.1007/s12016-017-8600-0. Search in Google Scholar

Novikov, V.Y. (2004). Acid Hydrolysis of Chitin and Chitosan. Russ. J. Appl. Chem. 77(3), 484–487. DOI: 10.1023/B:RJAC.0000031297.24742.b9. Search in Google Scholar

Rojas, J., Madrigal, J. & Ortiz, J. (2015). Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained from Shrimp Heads. Trop. J. Pharm. Res., 14(7), 1137–1144. DOI: 10.4314/tjpr.v14i7.3. Search in Google Scholar

Munjal, S. & Singh, A. (2020). The Arrhenius Acid and Base Theory. In S. Ambrish (Ed.), Corrosion. IntechOpen. Search in Google Scholar

Lin, Y. (2023). Whole-process optimization for industrial production of glucosamine sulfate sodium chloride based on QbD concept. Chin. J. Chem. Eng. 54, 153–161. DOI: 10.1016/j.cjche.2022.03.025. Search in Google Scholar

Ramırez, M.G., Avelizapa, L.R., Avelizapa, N.R. & Camarillo, R.C. (2004). Colloidal chitin stained with Remazol Brilliant Blue R®, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J. Microbiol. Methods, 56(2), 213–219. DOI: 10.1016/j.mimet.2003.10.011. Search in Google Scholar

Swartz, M. (2010). HPLC detectors: a brief review. J. Liq. Chromatogr. Relat. Technol. 33(9–12), 1130–1150. DOI: 10.1080/10826076.2010.484356. Search in Google Scholar

Yan, X. (2014). High performance liquid chromatography for carbohydrate analysis. In Z. Yuegang (Ed.), High-Performance Liquid Chromatography (HPLC): Principles, Practices and Procedures (pp. 1–20). Nova Science. Search in Google Scholar

Fish Information & Services. (2018). Shrimp exporters face prons and cons this year. https://seafood.media/fis/worldnews/worldnews.asp?l=e&id=100412&ndb=1 Search in Google Scholar

Sowcharoensuk, C. (2019). Industry Outlook 2019–2021: Processed Seafood. Krungsri Research. Retrieved June 27, 2022, from https://www.krungsri.com/en/research/industry/industry-outlook/Food-Beverage/Processed-Seafood/IO/io-frocessed-seafood-20-th Search in Google Scholar

Bassig, R.A., Obinque, A.V., Nebres, V.T., Delos Santos, V.H., Peralta, D.M. & Madrid, A.J.J. (2022). Black tiger shrimp processing waste can be converted into a value-added powder. Responsible Seafood Advocate. Retrieved June 27, 2022, from https://www.globalseafood.org/advocate/black-tiger-shrimp-processing-waste-can-be-converted-into-a-value-added-powder/. Search in Google Scholar

Benavente, M., Arias, S., Moreno, L. & Martínez, J. (2015). Production of glucosamine hydrochloride from crustacean shell. J. Pharm. Pharmacol. 3(1), 20–26. DOI: 10.17265/2328-2150/2015.01.003. Search in Google Scholar

Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428. DOI: 10.1021/ac60147a030. Search in Google Scholar

Magaña, A.A., Wrobel, K., Escobosa, A.R.C. & Wrobel, K. (2014). Fast determination of glucosamine in pharmaceutical formulations by high performance liquid chromatography without pre-column derivatization. Acta Univ. 24(2), 16–22. DOI: 10.15174/au.2014.717. Search in Google Scholar

Donzelli, B.G.G., Ostroff, G. & Harman, G.E. (2003). Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Carbohydr. Res. 338(18), 1823–1833. DOI: 10.1016/S0008-6215(03)00269-6. Search in Google Scholar

Chang, H., Chen, Y. & Tan, F. (2011). Antioxidative properties of a chitosan–glucose Maillard reaction product and its effect on pork qualities during refrigerated storage. Food Chem., 124(2), 589–595. DOI: 10.1016/j.foodchem.2010.06.080. Search in Google Scholar

Choi, Y.J., & Shin, Y.C. (2000). Microbial enzymes for the production of glucosamine and N-acetylglucosamine from chitinous biomass. Proceedings of the Korean Society for Applied Microbiology Conference. Search in Google Scholar

Gandhi, N. & Laidler, J.K. (2002). Preparation of glucosamine hydrochloride. In Alberta Research Council Inc. (Ed.). Washington, DC, USA: United States patent US 6,486,307. Search in Google Scholar

Martin Xavier, K. & Ramachandran, K. (2006). Standardization of Optimum Conditions for the Production of Glucosamine Hydrochiloride from Chitin Central Institute of Fisheries Technology]. Search in Google Scholar

Zhang, P. & Sutheerawattananonda, M. (2020). Kinetic models for glucosamine production by acid hydrolysis of chitin in five mushrooms. Int. J. Chem. Eng., 2020, 1-8. DOI: 10.1155/2020/5084036. Search in Google Scholar

Shī, X.W., Shī, M., Wú, M.Y. & Shī, L.K. (2014). Glucosamine sulfate production method. In L. Yangzhou Rixing Bio-Tech Co. (Ed.). China: CN103509063A. Search in Google Scholar

Hu, R., Lin, L., Liu, T., Ouyang, P., He, B., & Liu, S. (2008). Reducing sugar content in hemicellulose hydrolysate by DNS method: a revisit. J. Biobased Mater. Bio. 2(2), 156–161. DOI: 10.1166/jbmb.2008.306. Search in Google Scholar

Jain, A., Jain, R. & Jain, S. (2020). Quantitative Analysis of Reducing Sugars by 3, 5-Dinitrosalicylic Acid (DNSA Method). In Basic Techniques in Biochemistry, Microbiology and Molecular Biology: Principles and Techniques (pp. 181–183). DOI: 10.1007/978-1-4939-9861-6_43. Search in Google Scholar

Rivers, D.B., Gracheck, S.J., Woodford, L.C. & Emert, G.H. (1984). Limitations of the NNS assay for reducing sugars from saccharified lignocellulosics [Trichoderma reesei]. Biotechnol. Bioeng. 26(7), 800–802. DOI: 10.1002/bit.260260727. Search in Google Scholar

Tihomirova, K., Dalecka, B. & Mezule, L. (2016). Application of conventional HPLC RI technique for sugar analysis in hydrolysed hay. Agron. Res. 14(5), 1713–1719. Search in Google Scholar

Deshavath, N.N., Mukherjee, G., Goud, V.V., Veeranki, V.D. & Sastri, C.V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int. J. Biol. Macromol. 156, 180–185. DOI: 10.1016/j.ijbiomac.2020.04.045. Search in Google Scholar

Kazakevich, Y., McBrien, M. & LoBrutto, R. (2007). Computer-Assisted HPLC and Knowledge Management. In HPLC for Pharmaceutical Scientists (pp. 503–532). John Wiley & Sons. DOI: 10.1002/9780470087954.ch10. Search in Google Scholar

Schwald, W., Chan, M., Breuil, C. & Saddler, J. (1988). Comparison of HPLC and colorimetric methods for measuring cellulolytic activity. Appl. Microbiol. Biotechnol., 28, 398–403. DOI: 10.1007/BF00268203. Search in Google Scholar

Hasnaoui, N., Jbir, R., Mars, M., Trifi, M., Kamal-Eldin, A., Melgarejo, P. & Hernandez, F. (2011). Organic acids, sugars, and anthocyanins contents in juices of Tunisian pomegranate fruits. Int. J. Food Prop. 14(4), 741–757. DOI: 10.1080/10942910903383438. Search in Google Scholar

Sims, A. (1995). HPLC analysis of sugars in foods containing salt. J. Agric. Food Chem., 43(2), 377–380. DOI: 10.1021/jf00050a022. Search in Google Scholar

Holc, D., Pruss, A. & Komorowska-Kaufman, M. (2018). The possibility of using UV absorbance measurements to interpret the results of organic matter removal in the biofiltration process. Rocz. Ochr. Śr. 20, 326–341. Search in Google Scholar

Uchiho, Y., Goto, Y., Kamahori, M., Aota, T., Morisaki, A., Hosen, Y. & Koda, K. (2015). Far-ultraviolet absorbance detection of sugars and peptides by high-performance liquid chromatography. J. Chromatogr. A, 1424, 86–91. DOI: 10.1016/j.chroma.2015.11.006. Search in Google Scholar

Jalaludin, I. & Kim, J. (2021). Comparison of ultra-violet and refractive index detections in the HPLC analysis of sugars. Food Chem. 365(130514), 1–8. DOI: 10.1016/j.foodchem.2021.130514. Search in Google Scholar

Aghazadeh-Habashi, A., Sattari, S., Pasutto, F. & Jamali, F. (2002). High performance liquid chromatographic determination of glucosamine in rat plasma. J. Pharm. Sci. 5(2), 176–180. Search in Google Scholar

Kosman, V., Karlina, M., Pozharitskaya, O., Shikov, A. & Makarov, V. (2017). HPLC determination of glucosamine hydrochloride and chondroitin sulfate, weakly absorbing in the near UV region, in various buffer media. J. Anal. Chem. 72(8), 879–885. DOI: 10.1134/S106193481708007X. Search in Google Scholar

Russell, A.S., Aghazadeh-Habashi, A. & Jamali, F. (2002). Active ingredient consistency of commercially available glucosamine sulfate products. J. Rheumatol. 29(11), 2407–2409. Search in Google Scholar

El-Saharty, Y.S. & Bary, A.A. (2002). High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Anal. Chim. Acta, 462(1), 125–131. DOI: 10.1016/S0003-2670(02)00279-9. Search in Google Scholar

Mohammadi, M., Zamani, A. & Karimi, K. (2012). Determination of glucosamine in fungal cell walls by high-performance liquid chromatography (HPLC). J. Agric. Food Chem., 60(42), 10511–10515. DOI: 10.1021/jf303488w. Search in Google Scholar

Way, W.K., Gibson, K.G. & Breite, A.G. (2000). Determination of glucosamine in nutritional supplements by reversed-phase ion-pairing HPLC. J. Liq. Chromatogr. Related. Technol. 23(18), 2861–2871. DOI: 10.1081/JLC-100101238. Search in Google Scholar

Shao, Y., Alluri, R., Mummert, M., Koetter, U. & Lech, S. (2004). A stability-indicating HPLC method for the determination of glucosamine in pharmaceutical formulations. J. Pharm. Biomed. Anal. 35(3), 625–631. DOI: 10.1016/j.jpba.2004.01.021. Search in Google Scholar

Bertuzzi, D.L., Becher, T.B., Capreti, N.M., Amorim, J., Jurberg, I.D., Megiatto Jr, J.D. & Ornelas, C. (2018). General Protocol to Obtain D-Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Chall. 2(11), 1–6. DOI: 10.1002/gch2.201800046. Search in Google Scholar

Novikov, V.Y. & Ivanov, A. (1997). Synthesis of D (+)-glucosamine hydrochloride. Russ. J. Appl. Chem., 70(9), 1467–1470. Search in Google Scholar

Smets, R. & Van Der Borght, M. (2021). Enhancing the specificity of chitin determinations through glucosamine analysis via ultra-performance LC-MS. Anal. Bioanal. Chem. 413, 3119–3130. DOI: 10.1007/s00216-021-03252-4. Search in Google Scholar

Putri, A.K., Kartosentono, S. & Sugijanto, N.E.N. (2019). Isolation of glucosamine hcl from scylla paramamosain and determination by HPLC. J. Teknol. 81(5), 1–8. DOI: 10.11113/jt.v81.13416. Search in Google Scholar

Islam, M., Masum, S., Rahman, M. & Shaikh, A. (2011). Preparation of glucosamine hydrochloride from indigenous shrimp processing waste. Bangladesh J. Sci. Ind. Res., 46(3), 375–378. DOI: 10.3329/bjsir.v46i3.9046. Search in Google Scholar

Akpuaka, M.U. & Esimai, B.G. (2021). Isolation and Characterization of Chitin and Chitosan from the Biomass of Nigerian Shrimp Shells and Conversion to Glucosamine. Int. J. Res. Sci. Eng. 2(7), 181–187. https://www.journals.grdpublications.com/index.php/ijprse/article/view/347. Search in Google Scholar

Padman, A.J., Henderson, J., Hodgson, S. & Rahman, P.K. (2014). Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotechnol. Lett. 36, 2079–2084. DOI: 10.1007/s10529-014-1579-1. Search in Google Scholar

Chen, X., Liu, Y., Kerton, F. M. & Yan, N. (2015). Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids. Rsc Adv. 5(26), 20073–20080. DOI: 10.1039/C5RA00382B. Search in Google Scholar

Telange, D.R., Bhagat, S.B., Patil, A.T., Umekar, M.J., Pethe, A.M., Raut, N.A. & Dave, V. S. (2019). Glucosamine HCl-based solid dispersions to enhance the biopharmaceutical properties of acyclovir. J. Excip. Food Chem. 10(3), 65–81. Search in Google Scholar

Sun, X.-F., Sun, R., Fowler, P. & Baird, M. S. (2005). Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem. 53(4), 860–870. DOI: 10.1021/jf040456q. Search in Google Scholar

Yu, S., Zang, H., Chen, S., Jiang, Y., Yan, B. & Cheng, B. (2016). Efficient conversion of chitin biomass into 5-hydroxymethylfurfural over metal salts catalysts in dimethyl sulfoxide-water mixture under hydrothermal conditions. Polym. Degrad. Stab., 134, 105–114. DOI: 10.1016/j.polymdegradstab.2016.09.035. Search in Google Scholar

Sibi, G., Dhananjaya, K., Ravikumar, K., Mallesha, H., Venkatesha, R., Dwijendra, T., Bhusal, K., Gowda, N. & Gowda, K. (2013). Preparation of glucosamine hydrochloride from crustacean shell waste and it’s quantitation by RP-HPLC. Am. Eurasian. J. Sci. Res. 8(2), 63–67. DOI: 10.5829/idosi.aejsr.2013.8.2.7381. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering