INFORMAZIONI SU QUESTO ARTICOLO

Cita

Edström, J.O. (1953). The mechanism of reduction of iron oxides. J. Iron Steel Inst. 175, 289–304.Search in Google Scholar

Moon, J.T. & Walker, K.D. (1975). Swelling of iron oxide compacts during reduction. Ironmaking & Steelmaking, 1, 30–35.Search in Google Scholar

Spreitzer, D. & Schenk, J. (2019). Reduction of Iron Oxides with Hydrogen—A Review. Res. Internat. 20(10), 1900108. DOI: 10.1002/srin.201900108.Search in Google Scholar

Srinivisan, N.S. & Lahiri, A.K. (1977). Studies on the reduction of hematite by carbon. Metal. Trans. B. 8, 175. DOI: 10.1007/BF02656367.Search in Google Scholar

Bryk, C. & Lv, W.K. (1986). Continuous Reduction of iron ore with coal in an electrically heated furnace. The Canadian J. Mater. Sci. 25(3), 241–246. DOI: 10.1179/cmq.1986.25.3.241.Search in Google Scholar

Haque, R., Ray, H.S. & Mukherjee, A. (1993). Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus — A comparative study. Metall. Mater Trans B. 24, 1993, 511–520. DOI: 10.1007/BF02666434.Search in Google Scholar

Morrison, A.L., Wright, J.K. & Bouling, K. McG. (1978). Microstructure of metallized iron ore pellets reduced by coal char in a rotary kiln simulator. Ironmaking & Steelmaking, 5(1), 39–44.Search in Google Scholar

El-Geassy, A.A. & Nasr, M.I. (1990). Effect of sintering on the structure of hematite and its behaviour during reduction. Canadian Metallurgical Quarterly, 29(3), 185–191. DOI: 10.1179/cmq.1990.29.3.185.Search in Google Scholar

Davis, C.G., McFarlin, J.F. & Pratt, H.R. Direct-reduction technology and economics. (1982). Ironmaking & Steelmaking, 9(3), 93–129.Search in Google Scholar

Unal, A. & Bradshow, A.V. (1983). Rate processes and structural changes in gaseous reduction of hematite particles to magnetite. Metall. Trans. 14, 743–752.Search in Google Scholar

Abdel Halim, K.S.Nasr, M.I. & El-Geassy, A.A. (2011). Developed model for reduction mechanism of iron ore pellets under load. Ironmaking & Steelmaking, 38, 189–196. DOI: 10.1179/030192310X12816231892305.Search in Google Scholar

El-Geassy, A.A., Nasr, M.I., El-Raghy, S.M. & Hammam, A.E. (2020). Comparative studies on isothermal and non-isothermal reduction of hematite in carbon monoxide atmosphere. Ironmaking & Steelmaking, 47, 948–957. DOI: 10.1080/03019233.2019.1646564.Search in Google Scholar

Bahgat, M., Abdel Halim, K.S., El-Kelesh, H.A. & Nasr, M.I. (2011).Behaviour of wüstite prepared from Baharia iron ore sinter during reduction with CO–CO2–N2 gas mixture. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metal. C). 120(2), 102. DOI: 10.1179/1743285510Y.0000000010.Search in Google Scholar

El-Geassy, A.A. & Rajaumar, V. (1985) Influence of particle size on the gaseous reduction of wüstite at 900–1100 oC. Trans. ISIJ, 25, 1022.Search in Google Scholar

Shehata, K.A. & Ezz, S.Y. (1973). Study of the last stages or reduction of iron oxides. Trans. IMM, 82 C, 638.Search in Google Scholar

El-Geassy, A.A., Nasr, M.I. & Omar, A.A. (1990). The fourteen congress IMM, 2-6 July (pp 29). London, UK.Search in Google Scholar

El-Geassy, A.A. (1986). Gaseous reduction of Fe2O3 compacts at 600–1050 oC. J. Mat. Sci. 21, 3889–3900. DOI: 10.1007/BF02431626.Search in Google Scholar

Nasr, M.I. (1985). Structural analysis in gas solid reaction. Ph. D. Thesis, Cairo University, Egypt.Search in Google Scholar

Hessien, M., Kashiwaya, Y., K. Ishii, K., Nasr, M.I. & El-Geassy, A.A. (2008). Characterization of iron ore sinter and its behaviour during non-isothermal reduction conditions. Ironmaking & Steelmaking, 35(3), 183–190. DOI: 10.1179/174328107X174663.Search in Google Scholar

El-Geassy, A.A., Shehata, K.A. & Ezz, S.Y. (1977). Mechanism of iron oxide reduction with hydrogen/carbon monoxide mixtures. J. Iron-Steel Inst. 17(11), 629–635. DOI: 10.2355/isijinternational1966.17.629.Search in Google Scholar

Turkdogan, E.T. & Vinters, J.V. (1974). Catalytic effect of iron on decomposition of carbon monoxide: I. carbon deposition in H2-CO Mixtures. Metal Trans B. 5, 11–19. DOI: 10.1007/BF02642919.Search in Google Scholar

Okura, A. & Metsuahita, Y. (1965). On the properties of reduced sponge-iron powders. Testu-To-Hagane, 51, 11. DOI: 10.2355/tetsutohagane1955.51.1_11.Search in Google Scholar

Towhidi, N. & Szekely, J. (1980). An experimental study of hematite reduction with CO+H2 mixtures over the temperature range 600–1300 o C. J. Metals. 32(12), 420.Search in Google Scholar

Wang, H. & Sohn, H.Y. (2012). Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact. Steel Res. Int. 83(9999), 1-7. DOI: 10.1002/srin.201200054.Search in Google Scholar

P. Cavaliere, P., Perrone, A. & Marsano, D. (2023). Effect of reducing atmosphere on the direct reduction of iron oxides pellets. Powder Technol. 426 (118650). DOI: 10.1016/j. powtec.2023.118650.Search in Google Scholar

Mckewan, W.K. (1962). Trans. TMS-AIME. 224, 2, 387–393.Search in Google Scholar

Sato, K.. Ueda, Y., Nishikawa, Y. & Goto, T. (1986). Effect of Pressure on Reduction Rate of Iron Ore with High Pressure Fluidized Bed. J. Iron-Steel Inst. 26(8), 697. DOI: 10.2355/isijinternational1966.26.697.Search in Google Scholar

Turkdogan, E.T. & Vinters, J.V. (1971). Gaseous reduction of iron oxides. 1. Reduction of hematite in hydrogen. Met. Trans. 2(11), 3175–3188.Search in Google Scholar

Turkdogan, E.T. & Vinters, J.V. (1972). Gaseous reduction of iron oxides: Part III. Reduction-oxidation of porous and dense iron oxides and iron. Met. Trans. 3, 1561–1574. DOI: 10.1007/BF02643047.Search in Google Scholar

El-Geassy, A.A. & Nasr, M.I. (1990). Influence of the original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts. J. Iron-Steel Inst. 30(6), 417–425. DOI: 10.2355/isijinternational.30.417.Search in Google Scholar

Abdel Halim, K.S., Bahgat, M., El-Kelesh, H.A. & Nasr, M.I. (2009). Metallic Iron Whisker Formation and Growth during Iron Oxide Reduction: Basicity Effect. Ironmaking & Steelmaking, 36(8), 631. DOI: 10.1179/174328109X463020.Search in Google Scholar

Bahgat, M., Abdel Halim, K.S., Nasr, M.I. & El-Geassy, A.A. (2008). Morphological Changes Accompanying the Gaseous Reduction of SiO2- Doped Wüstite Compacts. Ironmaking & Steelmaking, 35(3), 205–212. DOI: 10.1179/174328107X155259.Search in Google Scholar

Abdel Halim, K.S. (2007). Isothermal reduction behavior of Fe2O3/MnO composite materials with solid carbon. Mater. Sci. Eng. A, 452–453, 15–22. DOI: 10.1016/j.msea.2006.12.126.Search in Google Scholar

Bahgat, M., Abdel Halim, K.S., Nasr M.I. & El-Geassy A.A. (2007). Reduction Behavior of Wüstite Doped with MgO. Steel Res. Int. 78(6), 443–450. DOI: 10.1002/srin.200706228.Search in Google Scholar

Bahgat, M., Abdel Halim, K.S., El-Kelesh H.A. & Nasr, M.I. (2011). Behaviour of wustite prepared from Baharia iron ore sinter during reduction with CO–CO2–N2 gas mixture. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metal. C). 120(2), 102. DOI: 10.1179/1743285510Y.0000000010.Search in Google Scholar

El-Geassy, A.A. (1996). Gaseous reduction of pure Fe2O3 and MgO-doped Fe2O3 compacts with carbon monoxide at 1173–1473 K. J. Iron-Steel Inst. 36, 1328–1337.Search in Google Scholar

El-Geassy, A.A. (1997). Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173–1473K. J. Iron-Steel Inst. 37, 844–853. DOI: 10.2355/isijinternational.37.844.Search in Google Scholar

El-Geassy, A.A., Nasr, M.I., Omar, A.A. & Mousa, E.A. (2007). Reduction kinetics and catastrophic swelling of MnO2-doped Fe2O- compacts with CO at 1073–1373K. J. Iron-Steel Inst. 47(3), 377–385. DOI: 10.2355/isijinternational.47.377.Search in Google Scholar

El-Geassy, A.A. (1999). Influence of Doping with CaO and/or MgO on Stepwise Reduction of Pure Hematite Compacts. Ironmaking and Steelmaking 26(1), 41–52. DOI: 10.1179/irs.1999.26.1.41.Search in Google Scholar

El-Geassy, A.A. (1996). Reduction of CaO and/or MgO-doped Fe2O3 compacts with carbon monoxide at 1173–1473K. J. Iron-Steel Inst. 36(11), 1344–1353. DOI: 10.2355/isijinternational.36.1344.Search in Google Scholar

Abdel Halim, K.S., El-Geassy, A.A., Ramadan, M.; Nasr, M.I., Hussein, A., Fathy, N. & Alghamdi, A.S. (2022). Reduction Behavior and Characteristics of Metal Oxides in the Nanoscale. Metals, 12(12), 182. DOI:10.3390/met12122182.Search in Google Scholar

Szekely, J., Evans, J. & Sohn, H.Y. (1976). Gas Solid Reactions. Academic Press. New York, USA. Retrieved by AlChE (1977). 23(4). DOI: 10.1002/aic.690230435.Search in Google Scholar

Morrison, A.L., Wright, J.K. & Bouling, K.McG. (1978). Direct reduction of iron ore pellets in a rotary kiln simulator. Ironmaking and Steelmaking, 5(1), 32–38.Search in Google Scholar

McKewan, W.K. (1965). Steel Making, the Chipman Conference.141. MIT Press, Cambridge. Ed. J.F. Elliott.Search in Google Scholar

Lien, H.O, El-Mehairy A.E. & Ross, H.U. (1971). A two-zone theory of iron oxide reduction. J. Iron-Steel Inst. 209, 451–545.Search in Google Scholar

Babich, A. & Senk, D. (2015). Recent developments in blast furnace iron-making technology, Elsevier, Mineralogy, Processing and Environmental Sustainability, Pages 505–547, DOI: 10.1016/B978-1-78242-156-6.00017-4.Search in Google Scholar

Abdel Halim, K.S. (2013). Theoretical approach to change blast furnace regime with natural gas injection. J. Iron Steel Res. Internat. 20(9), 40–46. DOI: 10.1016/S1006-706X(13)60154-5.Search in Google Scholar

Wang, Y., Zuo, H. & Zhao, J. (2019). Recent progress and development of ironmaking in China as of 2019: an overview. Ironmaking & Steelmaking, 2020, 47(5), 1–10. DOI: 10.1080/03019233.2020.1794471.Search in Google Scholar

Chen, Y. & Zuo, H. (2021). Review of hydrogen-rich ironmaking technology in blast furnace. Ironmaking & Steelmaking, 48(6), 749–768. DOI: 10.1080/03019233.2021.1909992.Search in Google Scholar

Aziz, I.H., Abdullah, M.M., Salleh, M.A., Ming, L.Y. et.al. (2022). Recent developments in steelmaking industry and potential alkali activated based steel waste: A Comprehensive review. Materials, 15, 1948. DOI: 10.3390/ma15051948.Search in Google Scholar

Pavalov, M.A. (1949). Metallurgy of Pig Iron, Part II, Metallurgizdate, 628.Search in Google Scholar

Abdel Halim, K.S., Andronov, V.N. & Nasr, M.I. (2009). Blast furnace operation with natural gas injection and minimum theoretical flame temperature. Ironmaking and Steelmaking, 36(1), 12–16. DOI: 10.1179/174328107X155240.Search in Google Scholar

Abdel Halim, K.S. (2007). Effective utilization of using natural gas injection in the production of pig iron. Materials Letters, 61, 3281–3286. DOI:10.1016/j.matlet.2006.11.053.Search in Google Scholar

Andronov, V.N. & Abdel Halim, K.S. (2001). Improvement of technology of blast furnace melting with combined blowing, J. Ferrous Metals (Cherny Metall), 8, 25–30.Search in Google Scholar

Kuang, S., Li, Z. & Yu. A. (2018). Review on modeling and simulation of blast furnace. Steel Research International 89 (1). DOI: 10.1002/srin.201700071.Search in Google Scholar

Direct from Midrex, Third quarter. (2012).Search in Google Scholar

Dutta, S.K. & Sah, R. (2016). Direct Reduced Iron: Production. Encyclopedia of Iron, Steel, and Their Alloys. CRC Press. DOI: 10.1081/E-EISA-120050996.Search in Google Scholar

2020 World direct Reduction Statistics by Midrex. (2021). World Steel Dynamics, WSD. New Jersy, U.S.A.Search in Google Scholar

Schenk, J.L. (2006). FINEX®:From fine iron ore to hot metal. Proceedings of the innovations in ironmaking session of 2006. International symposium. Linz, Austria.Search in Google Scholar

Sohn, H.Y. & Szekely, J. (1972). A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. J. Chem. Eng. Sci. 27 (4), 763–778.Search in Google Scholar

Andronov, V.N. (2001). Modern Blast Furnace. Library of Saint Petersburg State Technical University, Russia.Search in Google Scholar

Lu, W.L. (1999). Kinetics and mechanisms of direct reduced iron ore. In J. Feinman, & D. R. Mac Rae (Eds.), Direct reduced iron – Technology and economics of production and use. 43–57. Warrendale: The Iron & Steel Society.Search in Google Scholar

Gudenau, H.W., Fang, J., Hirata, T. & Gebel, U. (1989). Steel Res. 60(314), 38.Search in Google Scholar

Gransden, I.F. & Sheasby, J.S. (1974). The sticking of iron ore during reduction by hydrogen in a fluidized bed. Canadian Metallurgical Quarterly. 13(4), 649–657.Search in Google Scholar

Schmole, P. & Lungen, H.B. (2012). From Ore to Steel-Ironmaking processes. Stahl und Eisen. 132(6), 29–38.Search in Google Scholar

Lungen, H.B., Mulheims, K. & Steffen, R. (2001). State of the art of direct reduction and smelting reduction of iron ores. STAHL EISEN. 121(5), 35–47.Search in Google Scholar

Kepplinger, W.L. (2009). Actual state of smelting-reduction processes in ironmaking. Stahl und Eisen.7, 43–45.Search in Google Scholar

Bohm, C., Heckmann, H. & Grill, W. (2011). SVAI Smelting/Direct Reduction Technology, Proc. Metec In Steel Conf. Dusseldorf, 27 june-1 July 2011. Dusseldorf, Germany.Search in Google Scholar

Schenk, J.L., Wallner, F., Kepplinger, W.L., Shin, M.K., Cho, M. & Lee, I.O. (2000). Technology for an increased portion of fine ore in the COREX process. Scandin. J. Metal. 29(2), 81–91.Search in Google Scholar

Anameric, B. & Kawatra, S.K. (2009). Direct iron smelting reduction processes.Mineral Processing & Extractive Metall. Rev. 30, 1–51. DOI: 10.1080/08827500802043490.Search in Google Scholar

Boom, R. &Steffen, R. (2001). Recycling of scrap for high quality steel products. STEEL RES, 72(3), 91–96.Search in Google Scholar

Fruehan, R.J., Astier, J.E. & Steffen, R. (2000). Status of direct reduction and smelting in the year of 2000. Proc. 4th European Coke and Ironmaking Congr. (ECIC 2000). 19–22 June, Paris, France.Search in Google Scholar

Shim, Y. & Jung, S. (2018). Conditions for Minimizing Direct Reduction in Smelting Reduction Iron Making. ISIJ. 58(2). 274–281.Search in Google Scholar

Chatterjee, A. (2005). A critical appraisal of the present status of smelting reduction-Part I From blast furnace to Corex. Steel Times International, 29(4), 23.Search in Google Scholar

Burke, P.D. & Gul, S. (2002). December). HIsmelt—the alternative ironmaking technology. In Proceedings of International Conference on Smelting Reduction for Ironmaking, Jouhari, AK, Galgali, RK, Misra, VN, Eds (pp. 61–71).Search in Google Scholar

Bhaskar, A., Assadi, M. & Nikpey Somehsaraei, H. (2020). Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies. 13, 758. DOI: 10.3390/en13030758.Search in Google Scholar

Ostadi, M., Paso, K.G., Rodriguez-Fabia, S., Qi, L.E., Manenti, F., Hillestad, M. (2020). Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies. 13(18), 4859. DOI: 10.3390/en13184859.Search in Google Scholar

Wang, R.R., Zhao, Y.Q., Babich, A., Senk, D. & Fan, X.Y., (2021). Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 329, 129797. DOI: 10.1016/j.jclepro.2021.129797.Search in Google Scholar

Ma, Y., Isnaldi R. Souza Filho, I.R.S., Bai, et.al. (2022). Hierarchical nature of hydrogen-based direct reduction of iron oxides. Scripta Materialia, 213, 114571. DOI: 10.1016/j. scriptamat.2022.114571.Search in Google Scholar

Abdel Halim, K.S., Ramadan, M., Shawabkeh, A., Abufara, A. (2013). Synthesis and characterization of metallic materials for membrane technology. Beni-Suef University J. Basic Appl. Sci. 2, 72–79.Search in Google Scholar

Abdel Halim, K.S. (2012). Novel synthesis of porous Fe–Ni ferroalloy powder for energy applications. Materials Letter, 68, 478. DOI: 10.1016/j.matlet.2011.11.048.Search in Google Scholar

Abdel Halim, K.S., Khedr, M.H., Nasr, M.I. & Abdel Wahab, M. Sh., (2008). Carbothermic reduction kinetics of nanocrystallite Fe2O3/NiO composites for the production of Fe/Ni alloy. J. Alloys Compounds. 463, 585–590. DOI: 10.1016/j. jallcom.2008.02.026.Search in Google Scholar

El-Geassy, A.A, Abdel Halim K.S. & Alghamdi A.S. (2023). A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures. Materials, 16(7), 2736. DOI: 10.3390/ma16072736.Search in Google Scholar

Abdel Halim, K.S., Bram, M., Buchkremer, H.P. & Bahgat, M. (2012). Synthesis of heavy tungsten alloy by thermal technique. Ind. Engin. Chem. Res. 51(50), 16354–16360. DOI: 10.1021/ie301947e.Search in Google Scholar

Al-Kelesh, H., Abdel Halim, K.S., Nasr, M.I. (2016). Synthesis of heavy tungsten alloys via powder reduction technique. J. Mat. Res. 31(9), 2977–2986. DOI: 10.1557/jmr.2016.318.Search in Google Scholar

Ahmed, H.M., El-Geassy A.A. & Seetheraman S. (2011). Kinetic studies of hydrogen reduction of NiO-WO3 precursors in fluidized bed reactor. ISIJ Int. 51(9), 1359–1367. DOI: 10.2355/isijinternational.51.1383.Search in Google Scholar

Abdel Halim, K.S., Ramadan, M., Shawabkeh, A. & Fathy, N. (2017). Developing nanomaterials for ironmaking processes: Theory and practice. Appl. Mech. Mat. 865, 3–8. DOI: 10.4028/www.scientific.net/AMM.865.3.Search in Google Scholar

Abdel Halim, K.S., Khedr, M.H., Soliman, N.K. (2010). Reduction characteristics of iron oxide in nanoscale. Mat. Sci. Technol. 26(4), 445–452. DOI: 10.1179/026708309X1246 8927349253.Search in Google Scholar

Khedr, M.H., Abdel Halim, K.S. & Soliman, N.K. (2009). Synthesis and photocatalytic activity of nano-sized iron oxides. Mat. Letters. 63, 598–601. DOI: 10.1016/j.matlet.2008.11.050.Search in Google Scholar

Khedr, M.H., Abdel Halim, K.S., Soliman, N.K. (2008). Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Appl. Surf. Sci. 255, 2375–2381. DOI: 10.1016/j. apsusc.2008.07.096.Search in Google Scholar

El-Sheikh, S.M., Harraz, F.A., Abdel-Halim, K.S. (2009). Catalytic performance of nanostructured iron oxides synthesized by thermal decomposition. J. Alloys Comp. 487, 716–723. DOI: 10.1016/j.jallcom.2009.08.053.Search in Google Scholar

Lyadov, A.S, Kochubeev, A.A., Markova, E.B., Parenago, O.P., Khadzhiev S.N. (2016). Features of Reduction and Chemisorption Properties of Nanosized Iron (III) Oxide. Petroleum Chem. 56(12), 1134–1139.Search in Google Scholar

Abdel Halim, K.S., Khedr, M.H., Nasr, M.I., El-Mansy A. (2007). Factors affecting catalytic oxidation of CO over nano-sized Fe2O3. Mater. Res. Bull. 42, 731–741. DOI: 10.1016/j. materresbull.2006.07.009.Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering