Accesso libero

Experimental research on the removal characteristics of simulated radioactive aerosols by a cloud-type radioactive aerosol elimination system

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Pan g, C.X., You, H.H., Liang, L.L., Lin, X.Y., Zhang, Y.P., Zhang, H., Pan, X.H., Hu, Y., Chen, Y., Luo, X.G. & Wang, H.J. (2023). Bamboo pulp-based electret fiber aerogel with enhanced electret performance by P-phenylenediamine modification for simulated radioactive aerosol purification in confined spaces. Colloids Surf. A Physicochem. Eng. Asp., 658, 130502. DOI: 10.1016/j.colsurfa.2022.130502. Search in Google Scholar

Xue, Y., Chen, J., Liu, P., Gao, J.Z., Gui, Y.Y., Cheng, W.T., Mu, F.Q. & Yan, Y.D. (2022). An efficient and high-capacity porous functionalized-membranes for uranium recovery from wastewater. Colloids Surf. A Physicochem. Eng. Asp., 647. DOI: 10.1016/J.COLSURFA.2022.129032. Search in Google Scholar

Dong, X.A., Cw, A., Wei, D.A. & Hwa, B. (2020). Modelling dispersion of radioactive aerosols and occupational dose assessment of workers in a large nuclear plant industrial workshop with a stratified air conditioning system-sciencedirect. Environ. Technol. Innov., 19. DOI: 10.1016/j.eti.2020.100828. Search in Google Scholar

Lin, L., Chen, H., Lin, L. & Xu, Q. (2009). The literature review of radioactive aerosol purification. Ind. Saf. Environ. Prot., 35, 1–3. Search in Google Scholar

Lee, M.H., Yang, W., Chae, N. & Choi, S. (2019). Performance assessment of hepa filter against radioactive aerosols from metal cutting during nuclear decommissioning. Nucl. Eng. Technol., 52(5). DOI: 10.1016/j.net.2019.10.017. Search in Google Scholar

El- Hussein, A. (2005). A study on natural radiation exposure in different realistic living rooms, J. Environ. Radioact., 79, 355–367. DOI: 10.1016/j. jenvrad.2004.08.009. Search in Google Scholar

Tripathi S.N. & Harrision R.G. (2001). Scavenging of electrifiedradioactive aerosol. Atmos. Environ., 35(33), 5817–5821. DOI: 10.1016/s1352-2310(01)00299-0. Search in Google Scholar

Ren, H.Y., Li, J., Yu, F. & Liang, S.L. (2020). Current situation and prospect of radioactive aerosol removal technology. Environ. Sci. Manag., 45, 92–96. DOI: 10.3969/j. issn.1673–1212.2020.10.020. Search in Google Scholar

Yang, T., Liu, Y. & Xing, P. (2003). Study on filtration efficiency of glass fiber filter for aerosols. Radiat. Prot., 23, 49–54. DOI: 10.3321/j.issn:1000-8187.2003.01.009. Search in Google Scholar

Wang, T., Wang, S. & Gao, Y. (2021). Emergency control and elinination of radioactive aerosol diffusion in environmental pollution accidents. Nucl. Saf. 20, 17–24. DOI: 10.16432/j. cnki.1672-5360.2021.03.004. Search in Google Scholar

Wang, L.J., Xu, X.C., Niu, X.H. & Pan, J.M. (2021). Colorimetric detection and membrane removal of arsenate by a multifunctional L-arginine modified FeOOH. Sep. Purif. Technol., 258, 118021. DOI: 10.1016/j.seppur.2020.118021. Search in Google Scholar

Ding, S.J., Lu, J.W., Ding, Z.C., Li, N., Fu, F.L. & Tang, B. (2016). Cr (VI) removal by mesoporous FeOOH polymorphs: performance and mechanism. RSC Adv., 6(84). DOI: 10.1039/c6ra14522a. Search in Google Scholar

U.S . (2002). Department of Energy. Innovative technology summary report: fog and strip decontamination technology for use in D&D environments. LANL Release Number: LAUR-03-1558. Search in Google Scholar

Berger, C., Song, Z.M., Li, T.B. & Ogbazghi, A.Y. (2004). Ultrathin Epitaxial Graphite: 2D Electron Gas roperties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem., 108(52), 19912–19916. DOI: 10.1021/jp040650f. Search in Google Scholar

Nair, R.R., Blake, P. & Grigorenko, A.N. (2008). Fine Structure Constant Denes Visual Transparency of Graphene. Sci., 320, 1308. DOI: 10.1126/science.1156965. Search in Google Scholar

Ren, J., Cao, T., Yang, X. & Tao, L. (2020). Ultrafiltration treatment of wastewater contained heavy metals complexed with palygorskite. Pol. J. Chem. Technol., 22(4), 1–9. DOI: 10.2478/pjct-2020-0031. Search in Google Scholar

Abdeldaiem, M., Sánchez-Polo, M., Rashed, A., Kamal, N. & Said, N. (2019). Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. Pol. J. Chem. Technol., 21(4), 1–12. DOI: 10.2478/pjct-2019-0032. Search in Google Scholar

Wang, B., Li, S.Q., Dong, S.J., Xin, R.B., Jin, R.Z., Zhang, Y.M., Dong, K.J. & Jiang, Y.C. (2018). A New Fine Particle Removal Technology: Cloud-Air-Purifying. Ind. Eng. Chem. Res., 57(34), 11815–11825. DOI: 10.1021/acs.iecr.8b03034. Search in Google Scholar

Hummers, W.S. & Offeman, R.E., (1958). Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339. Search in Google Scholar

Su, J., Jia, Y., Shi, M.L., Shen, K.K., & Zhang, J.Q. (2022). Highly efficient unsymmetrical dimethylhydrazine removal from wastewater using MIL-53(Al)-derived carbons: Adsorption performance and mechanisms exploration. J. Environ. Chem. Eng., 10(6), 108975. DOI: 10.1016/j.jece.2022.108975. Search in Google Scholar

Zou, Z.G., Yu, H.J., Long, F. & Fan, Y.H. (2011). Preparation of Graphene Oxide by Ultrasound-Assisted Hummers Method. Chin. J. Inorg. Chem., 27(09):1753–1757. Search in Google Scholar

Zhou, Q., Lin, Y.X., Shu, J., Zhang, K.Y., Yu, Z.Z. & Tang, D.P. (2017). Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosens. and Bioelectron., 98, 15–21. DOI: 10.1016/j. bios.2017.06.033. Search in Google Scholar

Kirpalani, D.M. & Suzuki, K. (2011). Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization. Ultrason. Sonochem., 18(5), 1012–1017. DOI: 10.1016/j.ultsonch.2010.05.013. Search in Google Scholar

Trinh, V., Van, H., Pham, Q., Trinh, M. & Bui, H. (2020). Treatment of medical solid waste using an Air Flow controlled incinerator. Pol. J. Chem. Technol., 22(1) 29–34. DOI: 10.2478/pjct-2020-0005. Search in Google Scholar

Zhou, Y., Bao, Q.L., Tang, L.A.L., Zhong, Y.L. & Loh, K.P. (2009). Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. of Mater., 21(13), 2950–2956. DOI: 10.1021/cm9006603. Search in Google Scholar

Qiu, J.X., Zhang, P., Ling, M., Li, S., Liu, P.R., Zhao, H.J. & Zhang, S.Q. (2012). Photocatalytic Synthesis of TiO2 and Reduced Graphene Oxide Nanocomposite for Lithium Ion Battery. ACS Appl. Mater. Interface., DOI: 10.1021/am300722d. Search in Google Scholar

Han, Y., & Lu, Y. (2009). Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Compos. Sci. Technol., 69(7–8), 1231–1237. DOI: 10.1016/j.compscitech.2009.02.028. Search in Google Scholar

Yang, Z., Liu, X., Liu, X., Wu, J. & Yu, Z. (2021). Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloids Surf., B, 111605. DOI: 10.1016/j.colsurfb.2021.111605. Search in Google Scholar

Lei, C., Wen, F., Chen, J., Chen, W. & Wang, B. (2021). Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polym., 213(26), 123316. DOI: 10.1016/j. polymer.2020.123316. Search in Google Scholar

Travlou, N.A., Kyzas, G.Z., Lazaridis, N.K., & Deliyanni, E.A. (2013). Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir, 29(5), 1657–1668. DOI: 10.1021/la304696y. Search in Google Scholar

Geng, F.X., Zhao, Z.G., Geng, J.X., Cong, H.T. & Cheng H.M. (2007). A simple and low-temperature hydrothermal route for the synthesis of tubular α-FeOOH. Mater. Lett., 61(26), 4794–4796. DOI: 10.1016/j.matlet.2007.03.036. Search in Google Scholar

Zhang, J.Q., Jia, Y. & Lv, X.M. 2023. View of the use of Cloud-Air-Purifying in radioactive aerosol purification. Appl. Chem. Ind. 01, 223–226+232. DOI: 10.16581/j.cnki.issn1671-3206.20221214.003. Search in Google Scholar

Pramod, K., Paul, A.B. & Klaus, W. 2020. Aerosol Measurement: Principles, Techniques and Applications. Beijing: Chemical Industry Press. Search in Google Scholar

Striolo, A. (2019). Studying surfactants adsorption on heterogeneous substrates. Curr. Opin. Chem. Eng. 23, 115–122. DOI: 10.1016/j.coche.2019.03.009. Search in Google Scholar

Xu, J. C., Zhang, J. & Yu, Y. (2016). Characteristics of vapor condensation on coal-fired fine particles. Energy & Fuels. 30(3), 1822–1828. DOI: 10.1021/acs. energyfuels. 5b02200. Search in Google Scholar

Bao, J.J., Yang, L.J. & Guo, W.W. (2012). Improving the removal of fine particles in the WFGD system by adding wetting agent. Energy & Fuels. 26(8), 4924–4931. DOI: 10.1021/ef3007195. Search in Google Scholar

Mason, B.J. (1978). Cloud physics. Beijing: Science Press. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering