Accesso libero

Influence of drying and granulation process conditions on the characteristics of micronutrient chelates granules

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Grünewald, G., Westhoff, B. & Kind, M. (2010). Fluidized bed spray granulation: nucleation studies with steady-state experiments. Dry. Technol. 28, 349–360. DOI: 10.1080/07373931003641495. Search in Google Scholar

Rieck, C., Bück, A. & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanisms in spray fluidized bed process. AIChE Jurnal 66, e16920. DOI: 10.1002/aic.16920. Search in Google Scholar

Iveson, S.M., Litster, J.D., Hapgood, K. & Ennis, B.J. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117, 3–39. DOI: 10.1016/S0032-5910(01)00313-8. Search in Google Scholar

Burggraeve, A., Monteyne, T., Vervaet, C., Remon, J.P. & De Beer, T. (2013). Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review. Eur. J. Pharm. Biopharm. 83, 2–15. DOI: 10.1016/j.ejpb.2012.09.008. Search in Google Scholar

Michałek, B., Ochowiak, M., Bizon, K., Włodarczak, S., Krupińska, A., Matuszak, M., Boroń, D., Gierczyk, B. & Olszewski, R. (2021). Effect of adding surfactants to a solution of fertilizer on the granulation process. Energies 14(22), 7557. DOI: 10.3390/en14227557. Search in Google Scholar

Askarishahi, M., Maus, M., Schröder, D., Slade, D., Martinetz, M. & Jajcevic, D. (2020). Mechanistic modelling of fluid bed granulation, Part I: Agglomeration in pilot scale process. Int. J. Pharm. 573, 118837. DOI: 10.1016/j.ijpharm.2019.118837. Search in Google Scholar

Askarishahi, M., Salehi, N.-S., Maus, M., Schröder, D., Slade, D. & Jajcevic, D. (2020). Mechanistic modelling of fluid bed granulation, Part II: Eased process development via degree of wetness. Int. J. Pharm. 572, 118836. DOI: 10.1016/j. ijpharm.2019.118836. Search in Google Scholar

Saleh, K. & Guigon, P. (2007). Coating and encapsulation processes in powder technology. In Salman, A.D., Hounslow, M.J. & Seville, J.P.K. (Eds.), Granulation (pp. 323–375), Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

Lister, J. & Ennis, B. (2004). The science and engineering of granulation processes. Dordrecht, The Netherlands: Springer-Science+Business Media. Search in Google Scholar

Kovalchuk, N.M., Simons, M.J.H. (2021). Surfactant-mediated wetting and spreading: Recent advances and applications. Curr. Opin. Colloid Interface 51, 101375. DOI: 10.1016/j. cocis.2020.07.004. Search in Google Scholar

Januszkiewicz, K., Mrozek-Niećko, A. & Różański, J. (2019). Effect of surfactants and leaf surface morphology on the evaporation time and coverage area of ZnIDHA. Plant Soil 434, 93–105. DOI: 10.1007/s11104-018-3785-4. Search in Google Scholar

Hemati, M., Cherif, R., Saleh, K., Pont, V. (2003). Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol. 130, 18–34. DOI: 10.1016/S0032-5910(02)00221-8. Search in Google Scholar

Zank, J., Kind, M. & Schlünder, E.-U. (2001). Particle growth in a continuously operated fluidized bed granulator. Dry. Technol. 19, 1755–1772. DOI: 10.1081/DRT-100107271. Search in Google Scholar

Kapur, P.C. & Fuerstenau D.W. (1969). Coalescence model for granulation. Ind. Eng. Chem. Process Des. Dev. 8, 56–62. DOI: 10.1021/i260029a010. Search in Google Scholar

Breuer, M. & Almohammed, N. (2015). Modelling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. Int. J. Multiph. Flow. 73, 171–206. DOI: 10.1016/j.ijmultiphaseflow.2015.03.018. Search in Google Scholar

PN-EN ISO7837-2000. Search in Google Scholar

PN-EN ISO 845:2000. Search in Google Scholar

ISO 12154:2014(E). Search in Google Scholar

Hounslow, M.J., Ryall, R.L. & Marshall, V.R. (1988). A discretized population balance for nucleation, growth, and aggregation. AIChE Jurnal 34, 1821–1832. DOI: 10.1002/aic.690341108. Search in Google Scholar

Vreman, A.W., Van Lare, C.E. & Hounslow, M.J. (2005). A basic population balance model for fluid bed spray granulation. Chem. Eng. Sci. 64, 4389–4398. DOI: 10.1016/j. ces.2009.07.010. Search in Google Scholar

Otto, R., Dürr, R. & Kienle, A. (2023). Stability of combined continuous granulation and agglomeration processes in a fluidized bed with sieve-mill-recycle. Processes 11, 473. DOI: 10.3390/pr1102047. Search in Google Scholar

Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M. & Mörl, L. (2002). Analysis of the start-up process in continuous fluidized bed spray granulation by population balance modelling. Chem. Eng. Sci. 57, 4369–4390. DOI: 10.1016/S0009-2509(02)00352-4. Search in Google Scholar

Hounslow, M.J. (1990). A discretized population balance for continuous systems at steady state. AIChE J.36, 106–116. DOI: 10.1002/aic.690360113. Search in Google Scholar

Cronin, K., Ortiz, F.J., Ring, D. &Zhang, F. (2021). A new-time dependent rate constant of coalescence kernel for modelling of fluidized bed granulation. Powder Technol. 379, 321–334. DOI: 10.1016/j.powtec.2020.10.083. Search in Google Scholar

Otto, E., Dürr, R., Strenzke, G., Palis, S., Bück, A., Tsotsas, E. & Kienle, A. (2021). Kernel identification in continuous fluidized bed spray agglomeration from steady state data. Adv. Powder. Technol. 32, 2517–2529. DOI: 10.1016/j.apt.2021.05.028. Search in Google Scholar

Li, Z., Kessel, J., Grünewald, G., Kind, M. (2012). CFD simulation on drying and dust integration in fluidized bed spray granulation. Dry. Technol. 30, 1088–1098. DOI: 10.1080/07373937.2012.685672. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering