School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and EvaluationShanghai, China
School of Energy and Materials, Shanghai Polytechnic University, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and EvaluationShanghai, China
This work is licensed under the Creative Commons Attribution 4.0 International License.
Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 177, 70–80. DOI: 10.1016/j.jhazmat.2009.12.047.20044207Open DOISearch in Google Scholar
Fadillah, G., Saleh, T.A., Wahyuningsih, S., Ninda Karlina Putri, E. & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J., 378, 122140. DOI: 10.1016/j.cej.2019.122140.Open DOISearch in Google Scholar
Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., Tsang, D.C.W., Ok, Y.S. & Hou, D. (2020). A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater., 384, 121286. DOI: 10.1016/j.jhazmat.2019.121286.31586920Open DOISearch in Google Scholar
Salama, R.S., El-Sayed, E.-S.M., El-Bahy, S.M. & Awad, F.S. (2021). Silver nanoparticles supported on UIO-66 (Zr): As an efficient and recyclable heterogeneous catalyst and efficient adsorbent for removal of indigo carmine. Colloid. Surface. A, 626, 127089. DOI: 10.1016/j.colsurfa.2021.127089.Open DOISearch in Google Scholar
Alshorifi, F.T., Ali, S.L. & Salama, R.S. (2022). Promotional synergistic effect of Cs–Au NPs on the performance of Cs–Au/MgFe2O4 catalysts in catalysis 3,4-dihydropyrimidin-2(1h)-ones and degradation of RhB dye. J. Inorg. Organomet. P., 32, 3765–3776. DOI: 10.1007/s10904-022-02389-8.Open DOISearch in Google Scholar
Alshorifi, F.T., Alswat, A.A. & Salama, R.S. (2022). Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B. Heliyon, 8, 6. DOI: 10.1016/j.heliyon.2022.e09652.918988935706958Open DOISearch in Google Scholar
Ghosh, D. & Bhattacharyya, K.G. (2002). Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 20, 295–300. DOI: 10.1016/S0169-1317(01)00081-3.Open DOISearch in Google Scholar
El-Hakam, S.A., Alshorifi, F.T., Salama, R.S., Gamal, S., El-Yazeed, W.S.A., Ibrahim, A.A. & Ahmed, A.I. (2022). Application of nanostructured mesoporous silica/bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mater. Res. Technol., 18, 1963–1976. DOI: 10.1016/j.jmrt.2022.03.067.Open DOISearch in Google Scholar
Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A.R., Chen, H., Hu, X. & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol., 337, 125432. DOI: 10.1016/j. biortech.2021.125432.Open DOISearch in Google Scholar
Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O. & Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mate. Today Chem., 16, 100233. DOI: 10.1016/j.mtchem.2019.100233.Open DOISearch in Google Scholar
Güleç, F., Williams, O., Kostas, E.T., Samson, A., Stevens, L.A. & Lester, E. (2022). A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel, 330, 125428. DOI: 10.1016/j.fuel.2022.125428.Open DOISearch in Google Scholar
Reyes-Miranda, J., Garcia-Murillo, A., Garrido-Hernández, A.& Carrillo-Romo, F.d.J. (2021). Fast and mild alkaline solvothermal synthesis of nanostructured flower-like Na2Ti3O7 and its methylene blue adsorption capacity. Mater. Lett., 292, 129589. DOI: 10.1016/j.matlet.2021.129589.Open DOISearch in Google Scholar
Zhang, Z., Xu, L., Liu, Y., Feng, R., Zou, T., Zhang, Y., Kang, Y.& Zhou, P. (2021). Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Micropor. Mesopor. Mat., 315, 110904. DOI: 10.1016/j.micromeso.2021.110904.Open DOISearch in Google Scholar
Dai, K., Zhao, G., Kou, J., Wang, Z., Zhang, J., Wu, J., Yang, P., Li, M., Tang, C., Zhuang, W.& Ying, H. (2021). Magnetic mesoporous sodium citrate modified lignin for improved adsorption of calcium ions and methylene blue from aqueous solution. J. Environ. Chem. Eng., 9, 105180. DOI: 10.1016/j.jece.2021.105180.Open DOISearch in Google Scholar
Ajeel, S.J., Beddai, A.A. & Almohaisen, A.M.N. (2021). Preparation of alginate/graphene oxide composite for methylene blue removal. Mater. Today: Proc., DOI: 10.1016/j. matpr.2021.05.331.Open DOISearch in Google Scholar
Sharma, P., Olufemi, A.F. & Qanungo, K. (2021). Development of green geo-adsorbent pellets from low fire clay for possible use in methylene blue removal in aquaculture. Mater. Today: Proc., DOI: 10.1016/j.matpr.2021.07.343.Open DOISearch in Google Scholar
Chandarana, H., Senthil Kumar, P., Seenuvasan, M. & Anil Kumar, M. (2021). Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using casuarina equisetifolia pines. Chemosphere, 285, 131480. DOI: 10.1016/j. chemosphere.2021.131480.Open DOISearch in Google Scholar
Ibrahim, A.A., Salama, R.S., El-Hakam, S.A., Khder, A.S. & Ahmed, A.I. (2021). Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst. Colloid. Surface. A, 616, 126361. DOI: 10.1016/j.colsurfa.2021.126361.Open DOISearch in Google Scholar
Pasinszki, T., Krebsz, M., Chand, D., Kótai, L., Homonnay, Z., Sajó, I.E. & Váczi, T. (2020). Carbon microspheres decorated with iron sulfide nanoparticles for mercury(II) removal from water. J. Mater. Sci., 55, 1425–1435. DOI: 10.1007/s10853-019-04032-3.Open DOISearch in Google Scholar
Wang, G., Gao, G., Yang, S., Wang, Z., Jin, P. & Wei, J. (2021). Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal. Micropor. Mesopor. Mat., 310, 110623. DOI: 10.1016/j.micromeso.2020.110623.Open DOISearch in Google Scholar
Krebsz, M., Pasinszki, T., Tung, T.T., Nine, M.J. & Losic, D. (2021). Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water separation. Chemosphere, 263, 127790. DOI: 10.1016/j.chemosphere.2020.127790.32854003Open DOISearch in Google Scholar
Pasinszki, T., Krebsz, M., Kótai, L., Sajó, I.E., Homonnay, Z., Kuzmann, E., Kiss, L.F., Váczi, T. & Kovács, I. (2015). Nanofurry magnetic carbon microspheres for separation processes and catalysis: Synthesis, phase composition, and properties. J. Mater. Sci., 50, 7353–7363. DOI: 10.1007/s10853-015-9292-6.Open DOISearch in Google Scholar
Chen, S., Belver, C., Li, H., Ren, L.Y., Liu, Y.D., Bedia, J., Gao, G.L. & Guan, J. (2018). Effects of pH value and calcium hardness on the removal of 1,1,1-trichloroethane by immobilized nanoscale zero-valent iron on silica based supports. Chemosphere, 211, 102–111. DOI: 10.1016/j.chemo-sphere.2018.07.127.Open DOISearch in Google Scholar
Sawafta, R. & Shahwan, T. (2019). A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. J. Mol. Liq., 273, 274–281. DOI: 10.1016/j.molliq.2018.10.010.Open DOISearch in Google Scholar
Yang, B., Tian, Z., Zhang, L., Guo, Y.& Yan, S. (2015). Enhanced heterogeneous fenton degradation of methylene blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide. J. Water Proc. Eng., 5, 101–111. DOI: 10.1016/j.jwpe.2015.01.006.Open DOISearch in Google Scholar
Zhang, J., Zhang, T., Liang, X., Wang, Y., Shi, Y., Guan, W., Liu, D., Ma, X., Pang, J., Xie, X., Hong, K. & Wu, Z. (2020). Efficient photocatalysis of Cr(VI) and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride. Appl. Clay Sci., 198, 105817. DOI: 10.1016/j.clay.2020.105817.Open DOISearch in Google Scholar
Zhang, N., Eric, M., Zhang, C., Zhang, J., Feng, K., Li, Y. & Wang, S. (2021). ZVI impregnation altered arsenic sorption by ordered mesoporous carbon in presence of Cr(VI): A mechanistic investigation. J. Hazard. Mater., 414, 125507. DOI: 10.1016/j.jhazmat.2021.125507.34030402Open DOISearch in Google Scholar
Xu, J., Wang, X., Pan, F., Qin, Y., Xia, J., Li, J. & Wu, F. (2018). Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants. Chem. Eng. J., 353, 542–549. DOI: 10.1016/j. cej.2018.07.030.Open DOISearch in Google Scholar
Chen, S., Li, Z., Belver, C., Gao, G., Guan, J., Guo, Y., Li, H., Ma, J., Bedia, J. & Wójtowicz, P. (2020). Comparison of the behavior of ZVI/carbon composites from both commercial origin and from spent Li-ion batteries and mill scale for the removal of ibuprofen in water. J. Environ. Manage., 264, 110480. DOI: 10.1016/j.jenvman.2020.110480.32250905Open DOISearch in Google Scholar
Shi, J., Wang, J., Wang, W., Teng, W. & Zhang, W.-x. (2019). Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). J. Environ. Sci., 81, 28–33. DOI: 10.1016/j.jes.2019.02.010.30975326Open DOISearch in Google Scholar
Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A.B., Filip, J., Zbořil, R., Deligiannakis, Y. & Karakassides, M.A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636–647. DOI: 10.1016/j. carbon.2015.05.081.Open DOISearch in Google Scholar
Gadipelli, S. & Guo, Z.X. (2015). Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield – A case for superior CO2 capture. Chem. Sus. Chem., 8, 2123–2132. DOI: 10.1002/cssc.201403402.451509725917928Open DOISearch in Google Scholar
Aijaz, A., Fujiwara, N. & Xu, Q. (2014). From metal– organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc., 136, 6790–6793. DOI: 10.1021/ja5003907.24786634Open DOISearch in Google Scholar
Sann, E.E., Pan, Y., Gao, Z., Zhan, S. & Xia, F. (2018). Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep. Purif. Technol., 206, 186–191. DOI: 10.1016/j. seppur.2018.04.027.Open DOISearch in Google Scholar
Pérez-Miana, M., Reséndiz-Ordóñez, J.U. & Coronas, J. (2021). Solventless synthesis of ZIF-l and ZIF-8 with hydraulic press and high temperature. Micropor. Mesopor. Mater., 328, 111487. DOI: 10.1016/j.micromeso.2021.111487.Open DOISearch in Google Scholar
Qu, Y., Qin, L. & Liu, X. (2023). Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohyd. Polym., 300, 120268. DOI: 10.1016/j.carbpol.2022.120268.36372491Open DOISearch in Google Scholar
Jiang, X.-F., Wang, X.-B., Dai, P., Li, X., Weng, Q., Wang, X., Tang, D.-M., Tang, J., Bando, Y. & Golberg, D. (2015). High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy, 16, 81–90. DOI: 10.1016/j. nanoen.2015.06.008.Open DOISearch in Google Scholar
Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P. & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc., 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003.Open DOISearch in Google Scholar
Chen, S., Bedia, J., Li, H., Ren, L.Y., Naluswata, F. & Belver, C. (2018). Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons. Chem. Eng. J., 343, 619–628. DOI: 10.1016/j. cej.2018.03.011.Open DOISearch in Google Scholar
Zhang, X., Lin, D. & Chen, W. (2015). Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption. RSC Adv., 5, 45136–45143. DOI: 10.1039/c5ra08014b.Open DOISearch in Google Scholar
Chen, X., Lu, K., Lin, D., Li, Y., Yin, S., Zhang, Z., Tang, M. & Chen, G. (2021). Hierarchical porous tubular biochar based sensor for detection of trace lead (II). Electroanalysis, 33, 473–482. DOI: 10.1002/elan.202060148.Open DOISearch in Google Scholar
Lu, K.C., Wang, J.K., Lin, D.H., Chen, X., Yin, S.Y. & Chen, G.S. (2020). Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal. Methods, 12, 2661–2667. DOI: 10.1039/d0ay00430h.32930296Open DOISearch in Google Scholar
Yin, S., Wang, J., Li, Y., Wu, T., Song, L., Zhu, Y., Chen, Y., Cheng, K., Zhang, J., Ma, X., Lin,D. & Chen, G. (2021). Macroscopically oriented magnetic core-regularized nanomaterials for glucose biosensors assisted by self-sacrificial label. Electroanalysis, 33, 2216–2225. DOI: 10.1002/elan.202100231.Open DOISearch in Google Scholar
Lin, D., Zhang, X., Cui, X. & Chen, W. (2014). Highly porous carbons with superior performance for CO2 capture through hydrogen-bonding interactions. RSC Adv., 4, 27414–27421. DOI: 10.1039/c4ra04545a.Open DOISearch in Google Scholar
Luan, Tran, B., Chin, H.-Y., Chang, B.K. & Chiang, A.S.T. (2019). Dye adsorption in ZIF-8: The importance of external surface area. Micropor. Mesopor. Mater., 277, 149–153. DOI: 10.1016/j.micromeso.2018.10.027.Open DOISearch in Google Scholar
Yao, J., He, M., Wang, K., Chen, R., Zhong, Z. & Wang, H. (2013). High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. Cryst. Eng. Comm., 15, 3601–3606. DOI: 10.1039/C3CE27093A.Open DOISearch in Google Scholar
Guan, X., Sun, Y., Qin, H., Li, J., Lo, I.M.C., He, D. & Dong, H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res., 75, 224–248. DOI: 10.1016/j.watres.2015.02.034.25770444Open DOISearch in Google Scholar
Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G. & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J., 307, 264–272. DOI: 10.1016/j.cej.2016.08.089.Open DOISearch in Google Scholar