Accesso libero

Pressure drops during the flow of solutions of cocamidopropyl betaine and cocamide DEA mixtures with the addition of ethylene glycol

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Broniarz-Press, L., Różański, J. & Różańska, S. (2007). Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Eng. 23,149–245. DOI: 10.1515/REVCE.2007.23.3-4.149.10.1515/REVCE.2007.23.3-4.149 Search in Google Scholar

2. Ayegba, P.O., Edomwonyi-Otu, L.C., Yusuf, N. & Abubakar, A. (2021). A review of drag reduction by additives in curved pipes for single-phase liquid and two-phase flows. Eng. Rep. 3, e12294, DOI: 10.1002/eng2.12294.10.1002/eng2.12294 Search in Google Scholar

3. Kobayashi, Y., Gomyo, H. & Arai, N. (2021). Molecular Insight into the Possible Mechanism of Drag Reduction of Surfactant Aqueous Solution in Pipe Flow. J. Mol. Sci. 22, 7573. DOI: 10.3390/ijms22147573.10.3390/ijms22147573830747734299196 Search in Google Scholar

4. Gong, W., Shen, J., Dai, W., Li, K. & Gong, M. (2021). Research and applications of drag reduction in thermal equipment: A review. J. Heat. Mass Transf. 172, 121–152. DOI: 10.1016/j.ijheatmasstransfer.2021.121152.10.1016/j.ijheatmasstransfer.2021.121152 Search in Google Scholar

5. Utomo, A., Riadi, A., Gunawan & Yanuar. (2021). Drag Reduction Using Additives in Smooth Circular Pipes Based on Experimental Approach. Processes. 9, 1596. DOI: 10.3390/pr9091596.10.3390/pr9091596 Search in Google Scholar

6. Aguilar, G., Gasljevic, K. & Matthys, E.F. (2001). Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions. J. Heat Mass Transf. 44, 2835–2843. DOI: 10.1016/S0017-9310(00)00319-7.10.1016/S0017-9310(00)00319-7 Search in Google Scholar

7. Usui, H., Itoh, T. & Saeki, T. (1998). On pipe diameter effects in surfactant drag-reducing pipe flow. Rheol. Acta. 37, 122–128. DOI: 10.1007/s003970050098.10.1007/s003970050098 Search in Google Scholar

8. Wei, J.J., Kawaguchi, Y., Li, F.C., Yu, B., Zakin, J.L., Hart, D.J. & Zhang, Y. (2009). Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. J. Heat Mass Transf. 52, 3547–3554. DOI: 10.1016/j.ijheatmasstransfer.2009.03.008.10.1016/j.ijheatmasstransfer.2009.03.008 Search in Google Scholar

9. Zhang, Y., Schmidt, J., Talmon, Y. & Zakin, J.L. (2005). Co-solvent effects on drag reduction, rheological properties and micelle microstructures of cationic surfactants. J. Colloid Interface Sci. 286, 596–709. DOI: 10.1016/j.jcis.2005.01.055.10.1016/j.jcis.2005.01.05515897088 Search in Google Scholar

10. Haruki, N., Inaba, H., Horibe, A. & Kodama, Y. (2009). Flow resistance and heat transfer characteristics of organic brine (Propylene Glycol) solution by adding flow drag reduction additive, Experimental Heat Transfer: J. Thermal Energy Generat., Transport, Storage, and Conversion 22, 283–299. DOI: 10.1080/08916150903099173.10.1080/08916150903099173 Search in Google Scholar

11. Haruki, N., Inaba, H., Horibe, A. & Tanaka, S. (2006). Viscosity measurements of ethylene glycol solution with flow drag reduction additives. Heat Transfer-Asian Research. 35(8), 553–557. DOI: 10.1002/htj.20134.10.1002/htj.20134 Search in Google Scholar

12. Różański, J. (2015). Pressure loss and convevtive heat transfer during the flow of surfactant solutions, Publishers of Poznan University of Technology, Poznań. Search in Google Scholar

13. Różańska, S. & Różański, J. (2020). Shear and extensional rheology of aqueous solutions of cocamidopropyl betaine and sodium dodecyl sulfate mixture. J. Dispers. Sci. Technol. 41, 733–741. DOI: 10.1080/01932691.2019.1611442.10.1080/01932691.2019.1611442 Search in Google Scholar

14. Różański, J., Różańska, S., Mitkowski, P.T., Szaferski, W., Wagner, P. & Frankiewicz, A. (2021). Drag Reduction in the Flow of Aqueous Solutions of a Mixture of Cocamidopropyl Betaine and Cocamide DEA. Energies. 14, 2683-1-2683-15. DOI: 10.3390/en14092683.10.3390/en14092683 Search in Google Scholar

15. Keera, S.T. & Deyab, M.A. (2005). Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water. Colloids Surf. A: Physicochem. Eng. Asp. 266, 129–140. DOI: 10.1016/j. colsurfa.2005.05.069.10.1016/j.colsurfa.2005.05.069 Search in Google Scholar

16. Choi, U.S. & Kasza, K.E. (1981). Long Term Degradation of Dilute Polyacrylamide Solutions In Turbulent Flow Drag Reduction in Fluids Flows, 163–169. Search in Google Scholar

17. Metzner, A.B., & Reed, J.C. (1995). Flow of non-newtonian fluids – Correlation of the laminar, transition, and turbulent-flow regions. AJChE Journal. 1, 434–440. DOI: 10.1002/aic.690010409.10.1002/aic.690010409 Search in Google Scholar

18. Myska, J. & Mik, V. (2004). Degradation of surfactant solutions by age and by flow singularity. Chem. Eng. Process. 43, 1495–1501. DOI: 10.1016/j.cep.2004.02.001.10.1016/j.cep.2004.02.001 Search in Google Scholar

19. Tamano, S., Itoh, M., Kato, K. & Kokota, K. (2010). Turbulent drag reduction in nonionic surfactant solutions. Phys. Fluids. 22, 55102–55112. DOI: 10.1063/1.3407666.10.1063/1.3407666 Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering