INFORMAZIONI SU QUESTO ARTICOLO

Cita

Di Paola, G., A. Rizzo, A.G. Benassai, G. Corrado, F. Matano & P. P. Aucelli (2021). Sea-level rise impact and future scenarios of inundation risk along the coastal plains in Campania (Italy). Environ. Earth Sci. 80 (17), 1–22. DOI: 10.1007/s12665-021-09884-0. Open DOISearch in Google Scholar

Aihaiti, A., Jiang, Z., Zhu, L., Li, W. & You Q. (2021). Risk changes of compound temperature and precipitation extremes in China under 1.5°C and 2°C global warming. Atmospheric Research 264, 105838. DOI: 10.1016/j.atmosres.2021.105838. Open DOISearch in Google Scholar

Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekdahl Jr, C.A., Guenther, P.R., Waterman, L.S. & Chin, J.F. (1976). Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28 (6), 538–551. DOI: 10.1111/j.2153-3490.1976.tb00701.x. Open DOISearch in Google Scholar

Benson, S., Chandler, W., Edmonds, J., Houghton, J., Levine, M., Bates, L., Chum, H., Dooley, J., Grether, D. & Logan, J.(1998). Assessment of basic research needs for greenhouse gas control technologies, Lawrence Berkeley National Lab., Berkeley, CA (US). ISBN: 9780080430188. Search in Google Scholar

Zhang, Y.D. & Zhao, T. (2013). Analysis on emission reduction targets of carbon dioxide in China. Advanced Materials Research, Trans Tech Publ. 734–737, 1891–1895. DOI: 10.4028/www.scientific.net/AMR.734-737.1891. Open DOISearch in Google Scholar

Krishnaiah, D., Bono, A., Anisuzzaman, S., Joseph C., & Khee T.B. (2014). Carbon dioxide removal by adsorption. J. Appl. Sci. 14 (23), 3142–3148. DOI: 10.3923/jas.2014.3142.3148. Open DOISearch in Google Scholar

Y Mohd Yazri, M.H. (2013). Development of Ionic Liquid Mixed Matrix Membrane (ILMMM) for Carbon Dioxide Removal. Universiti Teknologi Petronas. http://utpedia.utp.edu.my/id/eprint/8401 Search in Google Scholar

Abd, A.A., Naji, S.Z., Hashim, A.S. & Othman, M.R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J. Environ. Chem. Engin. 8 (5), 104142. DOI: 10.1016/j.jece.2020.104142. Open DOISearch in Google Scholar

Areán, C.O. & Delgado, M.R. (2010). Variable-temperature FT-IR studies on the thermodynamics of carbon dioxide adsorption on a faujasite-type HY zeolite. Appl. Surf. Sci. 256 (17), 5259–5262. DOI: 10.1016/j.apsusc.2009.12.114. Open DOISearch in Google Scholar

Ho, M.T., Allinson G.W. & Wiley, D.E. (2008). Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. & Engin. Chem. Res. 47 (14), 4883–4890. DOI: 10.1021/ie070831e. Open DOISearch in Google Scholar

Lin, R., Zhuang, L., Xu, X. & Chen, S. (2013). Design of a viscose based solid amine fiber: effect of its chemical structure on adsorption properties for carbon dioxide. J. Coll. Inter. Sci. 407, 425–431. DOI: 10.1016/j.jcis.2013.06.029.23859814 Open DOISearch in Google Scholar

Horio, M., Suzuki, K., Mori, T., Inukai, K. & Tomura, S., (1997). Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent, Google Patents. Search in Google Scholar

Mujmule, R.B., Chung, W.J. & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chem. Engin. J. 395, 125164. DOI: 10.1016/j.cej.2020.125164. Open DOISearch in Google Scholar

Hou, M., Qi, W., Li, L., Xu, R., Xue, J. Zhang, Y., Song, C. & Wang, T. (2021). Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors. J. Membr. Sci. 635: 119541. DOI: 10.1016/j.memsci.2021.119541. Open DOISearch in Google Scholar

Bell, J.G., Be nham, M.J. & Thomas, K.M. (2021). Adsorption of Carbon Dioxide, water vapor, nitrogen, and sulfur dioxide on activated carbon for capture from flue gases: competitive adsorption and selectivity aspects. Energy & Fuels 35(9), 8102-8116. DOI: 10.1021/acs.energyfuels.1c00339. Open DOISearch in Google Scholar

Yenisoy-Karakaş, S., Aygün, A., Güneş, M. & Tahtasakal, E. (2004). Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 42 (3), 477–484. DOI: 10.1016/j.carbon.2003.11.019. Open DOISearch in Google Scholar

Ma, R., Qin, X., Liu, Z., & Fu, Y. (2019). Adsorption property, kinetic and equilibrium studies of activated carbon fiber prepared from liquefied wood by ZnCl2 activation. Materials 12 (9), 1377. DOI: 10.3390/ma12091377.653934231035339 Open DOISearch in Google Scholar

Ramírez, A., Sierra, L., Mesa, M. & Restrepo, J. (2005). Simulation of nitrogen a dsorption–desorption isotherms. Hysteresis as an effect of pore connectivity. Chem. Engin. Sci. 60 (17), 4702–4708. DOI: 10.1016/j.ces.2005.03.004. Open DOISearch in Google Scholar

Voigt, W. (1993). Calculation of salt activities in molten salt hydrates applying the modified BET equation, I: Binary systems. Monatshefte für Chemie/Chemical Monthly 124 (8), 839–848. DOI: 10.1007/bf00816406 Open DOISearch in Google Scholar

Nunes, C.A. & Guerreiro, M.C. (2011). Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Química Nova 34, 472–476. DOI: 10.1590/S0100-40422011000300020. Open DOISearch in Google Scholar

Lawrence, N.S. & Wang, J. (2006). Chemical adsorption of phenothiazine dyes onto carbon nanotubes: Toward the low potential detection of NADH. Electrochem. Commun. 8 (1), 71–76. DOI: 10.1016/j.elecom.2005.10.026. Open DOISearch in Google Scholar

Rozanov, L. (20 21). Kinetic equations of non-localized physical adsorption in vacuum for Freundlich adsorption isotherm. Vacuum 189, 110267. DOI: 10.1016/j.vacuum.2021.110267. Open DOISearch in Google Scholar

Azuara, E., Cortes, R., Garcia, H.S. & Beristain, C.I. (1992). Kinetic model for osmotic dehydration and its relation-ship with Fick's second law. Inter. J. Food Sci. & Technol. 27 (4), 409–418. DOI: 10.1111/j.1365-2621.1992.tb01206.x. Open DOISearch in Google Scholar

Crich, D., Jiao, X.Y., Yao, Q. & Harwood, J.S. (1996). Radical Clock Reactions under Pseudo-First-Order Conditions Using Catalytic Quantities of Diphenyl Diselenide. A 77Seand 119Sn-NMR Study of the Reaction of Tributylstannane and Diphenyl Diselenide. J. Organic Chem. 61 (7), 2368–2373. DOI: 10.1021/jo950857s. Open DOISearch in Google Scholar

Ho, Y.S. & Ofomaja, A.E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J. Hazard. Mater. 129(1–3), 137–142. DOI: 10.1016/j.jhazmat.2005.08.020. Open DOISearch in Google Scholar

Moon, H. & Lee W.K. (1983). Intraparticle diffusion in liquid-phase adsorption of phenols with activated carbon in finite batch adsorber. J. Coll. Interf. Sci. 96 (1), 162–171. DOI: 10.1016/0021-9797(83)90018-8. Open DOISearch in Google Scholar

Xiong, F., Hwang, B., Jiang, Z., James, D., Lu, H. & Moortgat, J. (2021). Kinetic emission of shale gas in saline water: Insights from experimental observation of gas shale in canister desorption testing. Fuel 300, 121006. DOI: 10.1016/j.fuel.2021.121006. Open DOISearch in Google Scholar

Qin, C., Jiang, Y., Zuo, S., Chen, S., Xiao, S., & Liu, Z. (2021). Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2. Energy 236, 121410. DOI: 10.1016/j.energy.2021.121410. Open DOISearch in Google Scholar

Shen, D., Bülow, M., Siperstein, F., Engelhard, M. & Myers, A.L. (2000). Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6 (4), 275–286. DOI: 10.1023/A:1026551213604. Open DOISearch in Google Scholar

Fung, V., Hu, G., Ganesh, P. & Sumpter, B.G. (2021). Machine learned features from density of states for accurate adsorption energy prediction. Nature Commun. 12 (1), 1–11. DOI: 10.1038/s41467-020-20342-6.778257933398014 Open DOISearch in Google Scholar

Qiu, J., Wang, Y., Wu, P., Jiang, S., Cui, K., Chen, G., Liu, D. & Cui, G. (2021). Adsorption characteristics of hexadecyl ammonium with different numbers of carbon chains in montmorillonite and the structure of the prepared composites. J. Porous Mat. 28 (6), 1675–1687. DOI: 10.1007/s10934-021-01114-z. Open DOISearch in Google Scholar

Jin, C., Sun, J., Chen, Y., Guo, Y., Han, D., Wang, R. & Zhao, C. (2021). Sawdust wastes-derived porous carbons for CO2 adsorption. Part 1. Optimization preparation via orthogonal experiment. Separation and Purification Technology 276, 119270. DOI: 10.1016/j.seppur.2021.119270. Open DOISearch in Google Scholar

Jiao, J., Cao, J., Xia, Y. & Zhao, L. (2016). Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Engin. J. 306, 9–16. DOI: 10.1016/j.cej.2016.07.041. Open DOISearch in Google Scholar

Jia, J., Wang, Y., Feng, Y., Hu, G., Lin, J., Huang, Y., Zhang, Y., Liu, Z., Tang, C. & Yu, C., (2021). Hierarchically porous boron nitride/HKUST-1 hybrid materials: synthesis, CO2 adsorption capacity, and CO2/N2 and CO2/CH4 selectivity. Ind. & Engin. Chem. Res. 60 (6), 2463–2471. DOI: 10.1021/acs.iecr.0c05701. Open DOISearch in Google Scholar

Pham, T.H., Lee, B.K. & Kim, J. (2016). Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite. J. Taiwan Inst. Chem. Engin. 66, 239–248. DOI: 10.1016/j.jtice.2016.06.030. Open DOISearch in Google Scholar

Lee, S.Y. & Park, S.J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Col. Int. Sci. 389 (1), 230–235. DOI: 10.1016/j.jcis.2012.09.018.23046640 Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering