INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Folkers, K., Harwood, H.J. & Johnson, T.B. (1932). Researches on pyrimidines. cxxx. synthesis of 2-keto-1,2,3,4-tetrahydropyrimidines. J. Am. Chem. Soc. 54, 3751. DOI: 10.1021/ja01348a040.10.1021/ja01348a040 Search in Google Scholar

2. Atwal, K.S., Ahmed, S.Z., Bird, J.E., Delaney, C.L., Dickinson, K.E., Ferrara, F.N., Hedberg, A., Miller, A.V., Moreland, S. & O’Reilly, B.C. (1992). Dihydropyrimidine angiotensin II receptor antagonists. J. Med. Chem. 35, 4751−4763. DOI: 10.1021/jm00103a014.10.1021/jm00103a014 Search in Google Scholar

3. Rana, K., Kaur, B. & Kumar, B. (2004). Synthesis and antihypertensive activity of some dihydropyrimidines. Indian J. Chem. 43, 1553−1557.10.1002/chin.200445173 Search in Google Scholar

4. Rovnyak, G.C., Kimball, S.D., Beyer, B., Cucinotta, G., DiMarco, J.D., Gougoutas, J., Hedberg, A., Malley, M., Mc-Carthy, J.P., Zhang, R. & Moreland, S. (1995). Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem. 38, 119–29. DOI: 10.1021/jm00001a017.10.1021/jm00001a017 Search in Google Scholar

5. Atwal, K.S., Swanson, B.N., Unger, S.E., Floyd, D.M., Moreland, S., Hedberg, A. & Reilly, B.C.O. (1991). Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem. 34, 806−811. DOI: 10.1021/jm00106a048.10.1021/jm00106a048 Search in Google Scholar

6. Kappe, C.O. (1993). 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 49, 6937−6963. DOI: 10.1016/S0040-4020(01)87971-0.10.1016/S0040-4020(01)87971-0 Search in Google Scholar

7. Beena, K.P., Suresh, R., Rajasekaran, A. & Manna, P.K. (2016). Dihydropyrimidinones- a versatile Scaffold with diverse biological activity. J. Pharm. Sci. & Res. 8, 741−746. Search in Google Scholar

8. Jalali, M., Mahdavi, M., Memarian, H.R., Ranjbar, M., Soleymani, M., Fassihi, A. & Abedi, D. (2012). Antimicrobial evaluation of some novel derivatives of 3,4-dihydropyrimidine-2(1H)-One. Res. Pharm. Sci. 7, 243–247. PMID: 23248675. Search in Google Scholar

9. Pramanik, T., Pathan, A.H., Gupta, R., Singh, J. & Singh, S. (2015). Dihydropyrimidinone derivatives: green synthesis and effect of electronic factor on their antimicrobial properties. Res. J. Pharm. Biol. Chem. Sci. 6, 1152–1157. Search in Google Scholar

10. Shaikh, A. & Meshram, J.S. (2015). Design, synthesis and pharmacological assay of novel azo derivatives of dihydropyrimidinones. Cogent Chem. 1, 1019809. DOI:10.1080/23 312009.2015.1019809.10.1080/23312009.2015.1019809 Search in Google Scholar

11. Liu, Y., Liu, J., Zhang, R., Guo, Y., Wang, H., Meng, Q., Sun, Y. & Liu, Z. (2019). Synthesis, characterization, and anticancer activities evaluation of compounds derived from 3,4-dihydropyrimidin-2(1H)-One. Molecules, 24, 891. DOI: 10.3390/molecules24050891.10.3390/molecules24050891642957930832453 Search in Google Scholar

12. Abdel-Latif, N.A., Sabry, N.M., Mohamed, A.M. & Abdulla, M.M. (2007). Synthesis, analgesic, and antiparkinsonian profiles of some pyridine, pyrazoline, and thiopyrimidine derivatives. Monatshefte fur Chemie., 138, 715–724. DOI: 10.1007/s00706-007-0656-8.10.1007/s00706-007-0656-8 Search in Google Scholar

13. Bairagi, K.M., Younis, N.S., Emeka, P.M., Sangtani, E., Gonnade, R.G., Venugopala, K.N., Alwassil, O.I., Khalil, H.E. & Nayak, S.K. (2020). Antidiabetic activity of dihydropyrimidine scaffolds and structural insight by single crystal x-ray studies. Med. Chem. 16, 996–1003. DOI: 10.2174/15734064166661912 27123048.10.2174/1573406416666191227123048 Search in Google Scholar

14. Farghaly, A.M., AboulWafa, O.M., Elshaier, Y.A.M., Badawi, W.A., Haridy, H.H. & Mubarak, H.A.E. (2019). Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med. Chem. Res. 28, 360–379. DOI: 10.1007/s00044-019-02289-6.10.1007/s00044-019-02289-6 Search in Google Scholar

15. Silva, G.C.O., Correa, J.R., Rodrigues, M.O., Alvim, H.G.O., Guido, B.C., Gatto, C.C., Wanderley, K.A., Fioramonte, M., Gozzo, F.C., De Souza, R.O.M.A. & Neto, B.A.D. (2015). The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Adv. 5, 48506–48515. DOI: 10.1039/c5ra07677c.10.1039/C5RA07677C Search in Google Scholar

16. Soumyanarayanan, U., Bhat, V.G., Kar, S.S. & Mathew J.A. (2012). Monastrol mimic Biginelli dihydropyrimidinone derivatives: synthesis, cytotoxicity screening against HepG2 and HeLa cell lines and molecular modeling study. Org. Med. Chem. Lett., 2, 23. DOI: 10.1186/2191-2858-2-23.10.1186/2191-2858-2-23351814322691177 Search in Google Scholar

17. Romagnoli, R., Baraldi, P.G., Cara, C.L., Hamel, E., Basso, G., Bortolozzi, R. & Viola, G. (2010). Synthesis and biological evaluation of 2-(3’,4’,5’-trimethoxybenzoyl)-3-aryl/arylaminobenzo[b]thiophene derivatives as a novel class of antiproliferative agents. Eur. J. Med. Chem. 45, 5781–5791. DOI: 10.1016/j.ejmech.2010.09.038.10.1016/j.ejmech.2010.09.038307496620933308 Search in Google Scholar

18. Tseng, H.H., Chuah, Q.Y., Yang, P.M., Chen, C.T., Chao, J.C., Lin, M.D. & Chiu, S.J. (2012). Securin enhances the anti-cancer effects of 6-methoxy-3-(3’,4’,5’-trimethoxy-benzoyl)-1H-indole (BPR0L075) in human colorectal cancer cells. PLoS One, 7, e36006. DOI: 10.1371/journal.pone.0036006.10.1371/journal.pone.0036006333855722563433 Search in Google Scholar

19. Bhat, M.A., Al-Omar, M.A., Ghabbour, H. & Naglah, A. (2018). A one-pot Biginelli synthesis and sharacterization of novel dihydropyrimidinone derivatives containing piperazine/morpholine moiety. Molecules, 23, 1559. DOI: 10.3390/molecules23071559.10.3390/molecules23071559609959629954138 Search in Google Scholar

20. Bhat, M. A., Al-Omar, M. A., Naglah., A. & Al-Dhfyan, A. (2020). Biginelli synthesis of novel dihydropyrimidinone derivatives containing phthalimide moiety. J. Chem. 2020, 1−10. DOI: 10.1155/2020/4284628.10.1155/2020/4284628 Search in Google Scholar

21. Bhat, M.A., Al-Omar, M.A., Naglah, A. & Khan, A.A. (2019). Enaminone-derived pyrazoles with antimicrobial activity. J. Chem. 2019, 1−10. DOI: 10.1155/2019/2467970.10.1155/2019/2467970 Search in Google Scholar

22. Bhat, M.A., Al-Omar, M.A., Khan, A.A., Alanazi, A.M. & Naglah, A.M. (2019). Synthesis and antihepatotoxic activity of dihydropyrimidinone derivatives linked with 1, 4-benzodioxane. Drug Des. Devel. Ther. 13, 2393. DOI 10.2147/DDDT.S198865.10.2147/DDDT.S198865664700831409973 Search in Google Scholar

23. Bhat, M.A., Al-Omar, M.A. & Naglah, A. (2018). Synthesis and in vivo anti-ulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives. J. Enzyme. Inhib. Med. Chem. 33, 978−988. DOI: 10.1080/14756366.2018.1474212.10.1080/14756366.2018.1474212600990829792357 Search in Google Scholar

24. Bhat, M.A., Ahmed, A.F., Wen, Z.H., Al-Omar, M.A. & Abdel-Aziz, H.A. (2017). Synthesis, anti-inflammatory and neuroprotective activity of pyrazole and pyrazolo[3,4-d] pyridazine bearing 3,4,5-trimethoxyphenyl. Med. Chem. Res. 26, 1557−1566. DOI: 10.1007/s00044-017-1870-5.10.1007/s00044-017-1870-5 Search in Google Scholar

25. Bhat, M.A., Al-Omar, M.A., Naglah, A., Kalmouch, A. & Al-Dhfyan, A. (2019). Synthesis and characterization of novel Biginelli dihydropyrimidinone derivatives containing imidazole moiety. J. Chem. 2019, 1−10. DOI:10.1155/2019/3131879.10.1155/2019/3131879 Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering