INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Xing, Y.J., Xi, Z.H., Xue, Z.Q., Zhang, X.D., Song, J.H, Wang, R.M., Xu, J., Song, Y., Zhang, S.L. & Yu, D.P. (2003). Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett., 83, 1689–1691. DOI: 10.1063/1.1605808.10.1063/1.1605808 Search in Google Scholar

2. Leung, Y.H., Djurisic, A.B., Choy, W., Chan, W.K. & Cheah, K.W. (2004). ZnO nanostructures prepared by different methods. Mrs Proceedings. 818, M8.19.11. DOI: 10.1557/PROC-818-M8.19.1.10.1557/PROC-818-M8.19.1 Search in Google Scholar

3. Gozeh, B.A., Karabulut, A., Yildiz, A. & Yakuphanoglu, F. (2018). Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. J. Alloys Compd., 732, 16–24. DOI: 10.1016/j.jallcom.2017.10.167.10.1016/j.jallcom.2017.10.167 Search in Google Scholar

4. Zheng, W., Ding, R., Yan, X. & He, G. (2017). PEG induced tunable morphology and band gap of ZnO. Mater. Lett., 201, 85–88. DOI: 10.1016/j.matlet.2017.04.133.10.1016/j.matlet.2017.04.133 Search in Google Scholar

5. Ocak, Y.S. (2012). Electrical characterization of DC sputtered ZnO/pSi heterojunction. J. Alloys Compd., 513, 130–134. DOI: 10.1016/j. jallcom.2011.10.005. Search in Google Scholar

6. Liu, K., Sakurai, M. & Aono, M. (2010). ZnO-Based Ultraviolet Photodetectors. Sensors. 10, 8604–8634. DOI: 10.3390/s100908604.10.3390/s100908604 Search in Google Scholar

7. Kind, H., Yan, H., Messer, B., Law, M. & Yang, P. (2002). Nanowire ultraviolet photodetectors and optical switches. Adv. Mater., 14, 158–160. DOI:10.1002/1521–4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W.10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W Search in Google Scholar

8. Suo, B., Wu, W., Qin, Y., Cui, N., Bayerl, D.J., Wang, X. (2011). High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 21, 4464–4469. DOI: 10.1002/adfm.201101319.10.1002/adfm.201101319 Search in Google Scholar

9. Pope, M.T. & Müller, A. (2010). Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed., 30, 34–48. DOI: 10.1002/anie.199100341.10.1002/anie.199100341 Search in Google Scholar

10. Song, Y.F. & Tsunashima, R. (2012). Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev., 41, 7384. DOI: 10.1039/c2cs35143a.10.1039/c2cs35143a Search in Google Scholar

11. Pope, M.T. & Müller, A. (2002). Polyoxometalate chemistry from yopology via self-assembly to applications || introduction to polyoxometalate chemistry : from topology via self-assembly to applications, 1–6. DOI: 10.1007/0-306-47625-8_1.10.1007/0-306-47625-8_1 Search in Google Scholar

12. Dolbecq, A., Dumas, E., Mayer, C.R. & Mialane, P. (2010). ChemInform abstract: hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem. Rev., 110, 6009–6048. DOI: 10.1021/cr1000578.10.1021/cr1000578 Search in Google Scholar

13. Hill, C.L. & Bouchard, D.A. (1985). Catalytic photochemical dehydrogenation of organic substrates by polyoxometalates. J. Am. Chem. Soc., 107, 5148–5157. DOI: 10.1021/ja00304a019.10.1021/ja00304a019 Search in Google Scholar

14. Misono, M., Okuhara, T., Ichiki, T., Arai, T. & Kanda, Y. (1987). Pseudoliquid behavior of heteropoly compound catalysts. Unusual pressure dependencies of the rate and selectivity for ethanol dehydration. Cheminform. 18, 5535–5536. DOI: 10.1002/chin.198748022.10.1002/chin.198748022 Search in Google Scholar

15. Guo, Y., Hu, Ch., Jiang, S., Guo, C., Yang, Y., Wang, E., (2002). Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates. Appl. Catal. B: Environ. DOI: 10.1016/S0926-3373(01)00260-0.10.1016/S0926-3373(01)00260-0 Search in Google Scholar

16. Gkika, E., Troupis, A., Hiskia, A. & Papaconstantinou, E. (2006). Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. Appl. Catal. B Environ. 62, 28–34. DOI: 10.1016/j. apcatb.2005.06.012. Search in Google Scholar

17. Troupis, A., Hiskia, A. & Papaconstantinou, E. (2003). Photo-catalytic reduction—recovery of silver using polyoxometalates. Appl. Catal. B Environ. 42, 305–315. DOI: 10.1016/S0926-3373(02)00264-3.10.1016/S0926-3373(02)00264-3 Search in Google Scholar

18. Maldotti, A., Amadelli, R., Varani, G., Tollari, S. & Porta, F. (1994). Photocatalytic processes with polyoxotungstates: oxidation of cyclohexylamine. Inorg. Chem. 33, 2968–2973. DOI: 10.1021/ic00091a041.10.1021/ic00091a041 Search in Google Scholar

19. Papaconstantinou, E., Ioannidis, A., Hiskia, A., Argitis, P., Dimotikali, D. & Korres, S. (1993). Photocatalytic processes by polyoxometalates. splitting of water. The role of dioxygen. Molec. Engin. 3, 231–239. DOI: 10.1007/BF00999635.10.1007/BF00999635 Search in Google Scholar

20. Hiskia, A. & Papaconstantinou, E. (1992). Photocatalytic oxidation of organic compounds by polyoxometalates of molybdenum and tungsten. Catalyst regeneration by dioxygen. Inorg. Chem., 31, 163–167. DOI: 10.1021/ic00028a007.10.1021/ic00028a007 Search in Google Scholar

21. Sun, Z., Zhang, Y., Na, L., Lin, X. & Wang, T. (2015). Enhanced photoconductivity of a polyoxometalate–TiO2 composite for gas sensing applications. J. Mater. Chem. C. 3, 6153–6157. DOI: 10.1039/c5tc00904a.10.1039/C5TC00904A Search in Google Scholar

22. Benjamin D. Reeves, Unur, E., Ananthakrishnan, N. & Reynoldset J.R. (2007). Defunctionalization of ester-substituted electrochromic dioxythiophene polymers. Macromolecules. 40, 5344–5352. DOI: 10.1021/ma070046d.10.1021/ma070046d Search in Google Scholar

23. Yoon, Y.C., Park, K.S. & Kim, S.D. (2015). Effects of low preheating temperature for ZnO seed layer deposited by sol–gel spin coating on the structural properties of hydrothermal ZnO nanorods. Thin Solid Films. 597, 125–130. DOI: 10.1016/j.tsf.2015.11.040.10.1016/j.tsf.2015.11.040 Search in Google Scholar

24. Ghosh, R., Kundu, S., Majumder, R., Roy, S. Das, S., Banerjee, A., Guria, U., Banerjee, M., Bera, M.K., Subhedar, K.M. & Chowdhury, M.P. (2019). One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property. Appl. Nanosci. DOI: 10.1007/s13204-019-00985-8.10.1007/s13204-019-00985-8 Search in Google Scholar

25. Jamal, R., Li, Z., Wang, M., Qin, Z. & Abdiryim, T. (2016). Synthesis of poly(3,4-propylenedioxythiophene)/MnO2 composites and their applications in the adsorptive removal of methylene blue. Progress Natur. Sci. 26, 32–40. DOI: 10.1016/j.pnsc.2016.01.001.10.1016/j.pnsc.2016.01.001 Search in Google Scholar

26. Yuan, X.Y., Luo, H.A., Yang, N.F. & Liu, Y.J. (2006). Synthesis of long-chain pentaerythritol acetals catalyzed by phosphotungstic acid supported on active carbon under microwave irradiation. J. Hunan Univ. Nat. Sci. 33, 99–102. DOI: 10.1038/sj.cr.7310110.10.1038/sj.cr.731011017109011 Search in Google Scholar

27. Katiyar, A., Kumar, N. & Srivastava, A. (2018). Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Mater. Today: Proceed. 5, 9144–9147. DOI: 10.1016/j. matpr.2017.10.034. Search in Google Scholar

28. Moura, A.P., Lim a, R.C., Moreira, M.L., Volanti, D.P., Espinosa, J.W.M., Orlandi, M.O., Pi zani, P.S., Va rela, J.A. & L ongo, E., (2010). ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics. 181, 775–780. DOI: 10.1016/j.ssi.2010.03.013.10.1016/j.ssi.2010.03.013 Search in Google Scholar

29. Chang, S.J., Duan, B.G., Hsiao, C.H., Young, S.J. & Wu, S.L. (2013). Low-frequency noise characteristics of in-doped ZnO ultraviolet photodetectors. IEEE Phot. Technol. Letters. 25, 2043–2046. DOI: 10.1109/LPT.2013.2280719.10.1109/LPT.2013.2280719 Search in Google Scholar

30. Mandalapu, L.J., Xiu, F.X., Yang, Z. & Liu, J.L. (2007). Ultra-violet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-State Electron. 51, 1014–1017. DOI: 10.1016/j.sse.2007.05.009.10.1016/j.sse.2007.05.009 Search in Google Scholar

31. Mak, A., Mks, B., Kkn, A. & Sbk, A. Defect and strain modulated highly efficient ZnO UV detector: Temperature and low-pressure dependent studies. Appl. Surf. Sci. 505. DOI: 10.1016/j.apsusc.2019.144365.10.1016/j.apsusc.2019.144365 Search in Google Scholar

32. Hanna, B., Surendran, K.P. & Narayanan Unni, K.N. (2018). Low temperature-processed ZnO thin films for p-n junction-based visible-blind ultraviolet photodetectors. RSC Advanc. 8, 37365–37374. DOI: 10.1039/C8RA07312K.10.1039/C8RA07312K908943135557783 Search in Google Scholar

33. Weng, WY., Chang S.J., Hsu, C.L., Hsueh, T.J., Chang, S.P. (2010). A lateral ZnO nanowire photodetector prepared on glass substrate. J. Electr. Soc. 157, K30–K33. DOI: 10.1149/1.3264650.10.1149/1.3264650 Search in Google Scholar

34. Fan, H.-B., Yang, S.-Y., Zhang, P.-F., Wei H.-Y., Liu X.-L., Jiao, Ch.-M., Zhu, Q.-S., Chen, Y.-H. & Wang, Z.-G. (2008). Cross-di sciplinary physics and related areas of science and technology: a simple route of morphology control and structural and optical properties of ZnO grown by metal-organic chemical vapour deposition. Chin. Phys. Letters. 25, 3063–3066. DOI: 10.1088/0256-307X/25/8/088.10.1088/0256-307X/25/8/088 Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering