Accesso libero

An analytical model for wicking in porous media based on statistical geometry theory

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Liu, M., Wu, J. & Gan, Y. (2018). Tuning capillary penetration in porous media: Combining geometrical and evaporation effects. Int. J. Heat Mass Tran. 123, 239–250. DOI: 10.1016/j. ijheatmasstransfer.2018.02.101. Search in Google Scholar

2. Wang, Y., Li, Y. & Zheng, H. (2019). Equilibrium, kinetic and thermodynamic studies on methylene blue adsorption by Trichosanthes kirilowii Maxim shell activated carbon. Pol. J. Chem. Technol. 21(4), 89–97. DOI: 10.2478/pjct-2019-0044.10.2478/pjct-2019-0044 Search in Google Scholar

3. Yin, X., Ma, Y. & Wang, X. (2021). Increasing Effect of Water Clarifiers on the Treatment of Polymer-Containing Oil Production Sewage. Pol. J. Chem. Technol. 23(2), 20–26. DOI: 10.2478/PJCT-2021-0012.10.2478/pjct-2021-0012 Search in Google Scholar

4. Sönmez, S. & Arslan, S. (2021). Investigation of the effects on ink colour of lacquer coating applied to the printed substrate in the electrophotographic printing system. Pol. J. Chem. Technol. 23(2), 35–40. DOI: 10.2478/pjct-2021-0014.10.2478/pjct-2021-0014 Search in Google Scholar

5. Singh, K., Jung, M. & Brinkmann, M. (2019). Capillary-Dominated Fluid Displacement in Porous Media. Annu. Rev. Fluid Mech. 51, 429–449. DOI: 10.1146/annurev-fluid-010518-040342.10.1146/annurev-fluid-010518-040342 Search in Google Scholar

6. Washburn, W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273–283.10.1103/PhysRev.17.273 Search in Google Scholar

7. Li, X., Xian, F. & Alexand, R. (2013). An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997. DOI: 10.1016/j.ces. 2013.10.026 . Search in Google Scholar

8. Ramírez-Flores, J.C. & Bachmann, J. (2013) Analyzing capillary-rise method settings for contact-angle determination of granular media. J. Plant. Nutr. Soil. Sci. 176, 19–26. DOI: 10.1002/jpln.201100431.10.1002/jpln.201100431 Search in Google Scholar

9. Thakker, M., Karde, V. & Shah, D.O. (2013). Wettability measurement apparatus for porous material using the modified Washburn method. Meas. Sci. Technol. 24, 125902.10.1088/0957-0233/24/12/125902 Search in Google Scholar

10. Thomas, E.A., Poritz, D.H. & Muirhead, D.L. (2013). Urine Advancing Contact Angle on Several Surfaces. J. Adhes. Sci. Technol. 2 3(19), 17–23. DOI: 10.1163/016942409X125085 17390879. Search in Google Scholar

11. Yang, B., Song, S. & Lopez-Valdivieso, A. (2014). Effect of Particle Size on the Contact Angle of Molybdenite Powders. Mineral Processing & Extractive Metall. Rev. 35, 208–215. DOI: 10.1080/08827508.2013.763802.10.1080/08827508.2013.763802 Search in Google Scholar

12. Tamayol, A. & Bahrami, M. (2011). Transverse permeability of fibrous porous media. Phys. Rev E. 83, 046314. DOI: 10.1103/PhysRevE.83.046314.10.1103/PhysRevE.83.04631421599302 Search in Google Scholar

[13] Guo, P. (2012). Dependency of Tortuosity and Permeability of Porous Media on Directional Distribution of Pore Voids. Transp. Porous Med. 95(20 12), 285–303. DOI: 10.1007/s11242-012-0043-8.10.1007/s11242-012-0043-8 Search in Google Scholar

14. Li, K. (2010). More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hydrol. 111, 13–24. DOI: 10.1016/j.jconhyd.2009.10.005.10.1016/j.jconhyd.2009.10.005 Search in Google Scholar

15. Cai, J. & Yu, B. (2011). A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transp. Porous Med. 89(2), 251–263. DOI: 10.1007/s11242-011-9767-0.10.1007/s11242-011-9767-0 Search in Google Scholar

16. Cai, J., Hu, X., & Standnes, D.C. (2012). An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surface A. 414, 228–233. DOI: 10.1016/j.colsurfa.2012.08.047.10.1016/j.colsurfa.2012.08.047 Search in Google Scholar

17. Dang, T. & Hupka, J. (2005). Characterization of porous materials by capillary rise method. Physicochem. Probl. Mi. 39(205), 47–65. Search in Google Scholar

18. Stevens, N., Ralston, J. & Sedev, R. (2009). The uniform capillary model for packed beds and particle wettability. J. Colloid Interf. Sci. 337(1),162–169. DOI: 10.1016/j.jcis.2009.04.086.10.1016/j.jcis.2009.04.086 Search in Google Scholar

19. Kramer, G.J. (1998). Static liquid hold-up and capillary rise in packed beds. Chem. Eng. Sci. 16(29), 85–92. DOI: 10.1016/S0009-2509(98)80001-8.10.1016/S0009-2509(98)80001-8 Search in Google Scholar

20. Chan, T.Y., Hsu, C.S. & Lin, S.T. (2004). Factors Affecting the Significance of Gravity on the Infiltration of a Liquid into a Porous Solid. J. Porous Mat. 11(4), 273–277. DOI: 10.1023/B: JOPO.0000046354.27879.9b. Search in Google Scholar

21. Fries, N. & Dreyer, M. (2008). An analytic solution of capillary rise restrained by gravity. J. Colloid Interf. Sci. 320(1), 259–263. DOI: 10.1016/j.jcis.2008.01.009 .10.1016/j.jcis.2008.01.00918255086 Search in Google Scholar

22. Torquato, S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. NewYork, USA: Springer. DOI: 10.1115/1.1483342.10.1115/1.1483342 Search in Google Scholar

23. Elsner, A., Wagner, A. & Aste, T. (2009). Specific Surface Area and Volume Fraction of the Cherry-Pit Model with Packed Pits. J. Phys. Chem. B. 113(22), 7780–7784. DOI: 10.1021/jp806767m.10.1021/jp806767m19425581 Search in Google Scholar

24. Hermann, H. (2010). Effective dielectric and elastic properties of nanoporous low-k media. Modelling Simul. Mater. Sci. Eng. 18(5), 055007. DOI: 10.1088/0965-0393/18/5/055007.10.1088/0965-0393/18/5/055007 Search in Google Scholar

25. Li, K. & Zhao, H. (2012). Fractal Prediction Model of Spontaneous Imbibition Rate. Transp. Porous. Med. 91(2), 363–376. DOI: 10.1007/s11242-011-9848-0.10.1007/s11242-011-9848-0 Search in Google Scholar

26. Masoodi, R., Languri, E. & Ostadhossein, A. (2013). Dynamics of liquid rise in a vertical capillary tube. J. Colloid Interf. Sci. 389(1), 268–272. DOI: 10.1016/j.jcis.2012.09.004.10.1016/j.jcis.2012.09.00423063064 Search in Google Scholar

27. John, C.B. (1993). Wettability. New York, USA: Elsevier. Search in Google Scholar

28. Carman, P.C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng, 15, 32–48. Search in Google Scholar

29. Hermann, H. & Elsner, A. (2014). Geometric Models for Isotropic Random Porous Media: A Review. Adv. Mater. Sci. Eng. (2014), 1–16. DOI: 10.1155/2014/562874.10.1155/2014/562874 Search in Google Scholar

30. Cai, J., Yu, B. & Zou, M. (2010). Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media. Energ. Fuel. 24(2010), 1860–1867. DOI: 10.1021/ef901413p.10.1021/ef901413p Search in Google Scholar

31. Zhmud, B.V., Tiberg, F. & Hallstensson, K. (2000). Dynamics of Capillary Rise. J. Colloid Interf. Sci. 228(2), 263–269. DOI: 10.1006/jcis.2000.6951.10.1006/jcis.2000.695110926465 Search in Google Scholar

32. Li, G. Chen, X. & Huang, Y. (2015). Contact Angle Determined by Spontaneous Imbibition in Porous Media: Experiment and Theory. J. Disper. Sci. Technol. 36(6), 772–777. DOI: 10.1080/01932691.2014.921627.10.1080/01932691.2014.921627 Search in Google Scholar

33. Olafuyi, O.A., Cinar, Y. & Knackstedt, M.A. (2007). Spontaneous imbibition in small cores. SPE Asia Pacific Oil and Gas Conference and Exhibition. 30 October 2007. Jakarta, Indonesia. DOI: 10.2118/109724-MS.10.2118/109724-MS Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering