Accesso libero

Study on NH3-SCR of Cerium-based Substances in Rare Earth Concentrates from Bayan Obo

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Deng, L. & Zhang, Z. (2018). Assessing the features of extreme smog in China and the differentiated treatment strategy. Proceedings of the Royal Society A: Mathemat. Phys. Engin. Sci. 474(2209), 20170511. DOI: 10.1098/rspa.2017.0511.10.1098/rspa.2017.0511 Search in Google Scholar

2. Li, X.H. (2017). Optimization and reconstruction technology of SCR flue gas denitrification ultra low emission in coal fired power plant. IOP Conference Series: Mater. Sci. Engin. 231, 012111. DOI: 10.1088/1757-899X/231/1/012111.10.1088/1757-899X/231/1/012111 Search in Google Scholar

3. Zhu, M., Lai, J.K., Tumuluri, U., Wu, Z. & Wachs, I.E. (2017). Nature of Active Sites and Surface Intermediates during SCR of NO with NH3 by Supported V2O5–WO3/TiO2 Catalysts. J. Am. Chem. Soc. 139(44), 15624–15627. DOI: 10.1021/jacs.7b09646.10.1021/jacs.7b0964629059518 Search in Google Scholar

4. Xie, S.Z, Li, L.L, Jin, L.L, Wu, Y., Lin, H., Qin, Q., Liu, J., Dong, L. & Li, B. (2020). Low temperature high activity of M(M=Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Appl. Surf. Sci. 515, 146014. DOI: 10.1016/j.apsusc.2020.146014.10.1016/j.apsusc.2020.146014 Search in Google Scholar

5. You, X.C., Sheng, Z.Y., Yu, D.Q., Yang, L., Xiao, X. & Wang, S.(2017). Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Appl. Surf. Sci. 423, 845–854. DOI: 10.1016/j.apsusc.2017.06.22610.1016/j.apsusc.2017.06.226 Search in Google Scholar

6. Guo, D.Y., Guo, R.T., Duan, C.P., Liu, Y.Z., Wu, G.I., Qin, Y. & Pan, W.G. (2021). Enhanced K resistance of Cu-SSZ-13 catalyst for NH3-SCR reaction by the modification with Ce. Molec. Catal. 502, 111392. DOI: 10.1016/j.mcat.2021.111392.10.1016/j.mcat.2021.111392 Search in Google Scholar

7. Ma, Y.Y, Li, Z.F, Zhao, N. & Teng, Y.L. (2020). One-pot synthesis of Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts for NH3-SCR reaction with SO2 resistance. J. Rare Earths. 39(10), 1217–1223. DOI: 10.1016/j.jre.2020.07.028.10.1016/j.jre.2020.07.028 Search in Google Scholar

8. Zhang, L., Qu, H.X., Du, T., Ma,W. & Zong, Q. (2016). H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni–Ce–La composite oxide nanocrystals in NH3-SCR. Chem. Engin. J. 296, 122–131. DOI: 10.1016/j.cej.2016.03.109.10.1016/j.cej.2016.03.109 Search in Google Scholar

9. Wang Y., Li, G.G., Zhang, S.Q., Zang, X.Y., Zhang, X. & Hao, Z.P. (2020). Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study. Chem. Engin. J. 393, 124782. DOI: 10.1016/j.cej.2020.124782.10.1016/j.cej.2020.124782 Search in Google Scholar

10. Ma, S., Tan, H., Li, Y., Wang, P., Zhao,Ch., Niu, X. & Zhu, Y. (2020). Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y = 0.1, 0.2, 0.3) catalysts. Chemo-sphere. 243, 125309. DOI: 10.1016/j.chemosphere.2019.125309.10.1016/j.chemosphere.2019.12530931751925 Search in Google Scholar

11. Chang, H., Ma, L., Yang, S., Li, J., Chen, L., Wang, W. & Hao, J. (2013). Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. J. Hazard. Mater. 262, 782–788. DOI: 10.1016/j.jhazmat.2013.09.043.10.1016/j.jhazmat.2013.09.04324140528 Search in Google Scholar

12. Lei, M., Chang, Y.S., Mohit, N., Xiaoyin, CH., Junhua, L. & Szwank, J.W. (2018). Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. B: Environ. 232, 246–259. DOI: 10.1016/j. apcatb.2018.03.065. Search in Google Scholar

13. Zhou, Z.Z., Lan, J.M., Liu, L.J. & Liu, Z. (2021). Enhanced alkali resistance of sulfated CeO2 catalyst for the reduction of NOx from biomass fired flue gas. Catal. Commun. 149, 106230. DOI: 10.1016/j.catcom.2020.106230.10.1016/j.catcom.2020.106230 Search in Google Scholar

14. Chen, W.S., Zhang, C.G. & Hu, F.L, et al. (2019). Study on the denitrification performance of sulfuric acid modified sintered ore catalysts. Sintered pellets. 44(5), 6. DOI: 10.13403/j. sjqt.2019.05.079. Search in Google Scholar

15. Zhang, Q.L., Zhang, J.H., Song, Z.X., Ning, P., Li, H. & Liu, X. (2016). A novel and environmentally friendly SO42–/CeO2 catalyst for the selective catalytic reduction of NO with NH3. J. Ind. Engin. Chem. 34, 165–171. DOI: 10.1016/j.jiec.2015.11.006.10.1016/j.jiec.2015.11.006 Search in Google Scholar

16. Cong, Q,L,. Chen, L.,Wang, X., Ma, H., Zhao, J., Li, S., Hou,Y. & Li, W., (2020). Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3-ScienceDirect. Chem. Engin. J. 379, 122302–122302. DOI: 10.1016/j.cej.2019.122302.10.1016/j.cej.2019.122302 Search in Google Scholar

17. Duan, C.P., Guo, R.T., Liu, Y.Z., Wu, G.L., Miao Y., Gu, J. & Pan, W., (2020). Enhancement of kalium resistance of Ce-Ti oxide catalyst for NH3-SCR reaction by modification with holmium. J. Rare Earths. DOI: 10.1016/j.jre.2020.10.018.10.1016/j.jre.2020.10.018 Search in Google Scholar

18. Zhang, Y., Qu, R.Y., Su, W.K. & Li, J.H. (2015). A novel Ce–Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal. B: Environ. 176, 338–346. DOI: 10.1016/j.apcatb.2015.04.023.10.1016/j.apcatb.2015.04.023 Search in Google Scholar

19. Dong, W.K., Somin, L., Jongsik, K., Kwan Y.L., Young, L. & Heon P.H. (2021). Influence of support composition on enhancing the performance of Ce-V on TiO2 comprised tungsten-silica for NH3-SCR. Catalysis Today. 359, 112–123. DOI: 10.1016/j.cattod.2019.07.002.10.1016/j.cattod.2019.07.002 Search in Google Scholar

20. Zeng, Y.Q., Song, W., Wang,Y., Zhang, S., Wang, T. & Zhong Q. (2020). Novel Fe-doped CePO4 catalyst for selective catalytic reduction of NO with NH3: The role of Fe3+ ions. J. Hazard. Mater. 383, 121212. DOI: 10.1016/j.jhazmat.2019.121212.10.1016/j.jhazmat.2019.12121231546215 Search in Google Scholar

21. Qian, J.N., et al. (2017). Study on the Catalytic performance of CO reduction of NO over copper-based catalysts supported by hydrotalcite. J. Guangxi Univ. (Natural Science edition). 42(05), 1843–1850. Search in Google Scholar

22. Pena, D.A., Uphade B.S., Reddy, E.P. & Smirniotis, P.G. (2004). Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phys. Chem. B. 108(28), 9927–9936. DOI: 10.1021/jp0313122.10.1021/jp0313122 Search in Google Scholar

23. Zeng, Y.Q., Wang,Y., Zhang, S., Zhong, Q. & Rong, W., Li, X. (2018). One-pot synthesis of ceria and cerium phosphate (CeO2-CePO4) nanorod composites for selective catalytic reduction of NO with NH3: Active sites and reaction mechanism. J. Colloid Inter. Sci. 524, 8–15. DOI: 10.1016/j.jcis.2018.04.003.10.1016/j.jcis.2018.04.00329627671 Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering