Accesso libero

Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Johnson, T.B. & Chernoff, L.H.J. (1912). Hydantoins: Synthesis of 5-Thiohydantoins [Nineteenth Paper]. Am. Chem. Soc. 34(9), 1208–1213. DOI: 10.1021/ja02210a011.10.1021/ja02210a011 Search in Google Scholar

2. Seki, M., Kajiwara, D., Mizutani, H. & Minamiguchi, K. (2020). Analysis of novel enzalutamide-resistant cells: up-regulation of testis-specific Y-encoded protein gene promotes the expression of androgen receptor splicing variant 7 Transl. Cancer Res., 2020, 9(10), 6232–6245. DOI: 10.21037/tcr-20-1463.10.21037/tcr-20-1463879881635117234 Search in Google Scholar

3. Kyriakopoulos, C.E., Heath, E.I., Ferrari, A., Sperger, J.M., Singh, A., Perlman, S.B., Roth, A.R., Perk, T.G., Modelska, K. & Porcari, A., et al. (2020). Exploring Spatial-Temporal Changes in 18F-Sodium Fluoride PET/CT and Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer Treated with Enzalutamide. J. Clin. Oncol. 38(31), 3662–3671. DOI: 10.1200/jco.20.00348.10.1200/JCO.20.0034832897830 Search in Google Scholar

4. Al-Salama, Z.T., (2018). Apalutamide: First Global Approval, Drugs, 78, 699–705. DOI: 10.1007/s40265-018-0900-z.10.1007/s40265-018-0900-z29626324 Search in Google Scholar

5. Dellis, A.E. & Papatsoris, A.G., (2018). Apalutamide: the established and emerging roles in the treatment of advanced prostate cancer. Expert. Opin. Investig. Drugs. 27(6), 553–559. DOI: 10.1080/13543784.2018.1484107.10.1080/13543784.2018.148410729856649 Search in Google Scholar

6. Chong, J.T, Oh, W.K. & Liaw, B.C., (2018). Profile of apalutamide in the treatment of metastatic castration-resistant prostate cancer: evidence to dateOnco. Targets Ther. 11, 2141–2147. DOI: 10.2147/OTT.S147168.10.2147/OTT.S147168590549629695920 Search in Google Scholar

7. Qamar, R., Saeed, A., Saeed, M. & Seo, S.Y., et al., (2018). Synthesis and enzyme inhibitory kinetics of some novel 3-(substituted benzoyl)-2-thioxoimidazolidin-4-one derivatives as α-glucosidase/α-amylase inhibitors. Med. Chem. Res. 27(5), 1528–1537. DOI: 10.1007/s00044-018-2170-4.10.1007/s00044-018-2170-4 Search in Google Scholar

8. Desai, N.C., Vaghani, H.V., Karkar, T.J., Patel, B.Y. & Jadeja, K.A., (2017). Synthesis and antimicrobial studies of 1,2,3,4-tetrahydropyrimidine bearing imidazole analogues. Indian. J. Chem., 2017, 56B, 438–446. http://nopr.niscair.res.in/handle/123456789/41188. Search in Google Scholar

9. Chérouvrier, J.R., Carreaux, F. & Bazureau, J.P., (2004). Reactivity of 2-Thiohydantoins Towards Various Electrophilic Reagents: Applications to the Synthesis of New 2-Ylidene-3,5-dihydro-4H-imidazol-4-ones. Molecules, 9(10), 867–875. DOI: 10.1002/chin.200306129.10.1002/chin.200306129 Search in Google Scholar

10. Khodair, A.I., El-Subbagh, H.I., El-Emam, A.A. (1997). Synthesis of certain 5-substituted 2-thiohydantoin derivatives as potential cytotoxic and antiviral agents. Boll Chim Farm, 136, 561–567. Molecules 2006, 11 749. Search in Google Scholar

11. Wang, Z.D., Sheikh, S.O., Zhang, Y. (2006). A Simple Synthesis of 2-Thiohydantoins. Molecules, 11, 739–750. DOI: 10.3390/11100739.10.3390/11100739614850817971750 Search in Google Scholar

12. Takahashi, A., Matsuoka, H., Ozawa, Y. & Uda, Y. (1998). Antimutagenic Properties of 3,5-Disubstituted 2-Thiohydantoins. J. Agric. Food Chem., 46, 5037–5042. DOI:10.1021/jf980430x; Search in Google Scholar

13. Froelich, E.; Fruehan, A.; Jackman, M.; Kirchner, F.K.; Alexander, E.J.; Archer, S. (1954). 5-Heptyl-2-Thiohydantion, A New Antitubercular Agent. J. Am. Chem. Soc. 1954, 76, 3099–3100. DOI: 10.1021/ja01640a088.10.1021/ja01640a088 Search in Google Scholar

14. Al-Obaid, A.M.; El-Subbagh, H.I.; Khodair, A.I. & Elmazar, M.M. (1996). 5-substituted-2-thiohydantoin analogs as a novel class of antitumor agents. Anticancer Drugs, 7, 873. DOI: 10.1097/00001813-199611000-00009.10.1097/00001813-199611000-00009 Search in Google Scholar

15. Lacroix, G., Bascou, J.-P., Perez, J. & Gadras, A.U.S. Pat. 6,018,052, 2000; Search in Google Scholar

16. Lacroix, G., Bascou, J.P., Perez, J. & Gadras, A.U.S. Pat. 5,650,519, 1997; Search in Google Scholar

17. Marton, J., Enisz, J., Hosztafi, S. & Timar, T.J. Agric. (1993). Preparation and Fungicidal Activity of 5-Substituted Hydantoins and Their 2-Thio Analogs. Food Chem., 41, 148–152. DOI: 10.1021/jf00025a031.10.1021/jf00025a031 Search in Google Scholar

18. El-Barbary, A.A., Khodair, A.I., Pedersen, E.B. & Nielsen, C.J. (1994). S-Glucosylated hydantoins as new antiviral agents. Med. Chem., 37, 73–77. DOI: 10.1021/jm00027a009.10.1021/jm00027a009 Search in Google Scholar

19. Tompkins, J.E. (1986). 5,5-Diaryl-2-thiohydantoins and 5,5-diaryl N3-substituted 2-thiohydantoins as potential hypolipidemic agents. J. Med. Chem., 29, 855–589. DOI: 10.1021/jm00155a042.10.1021/jm00155a042 Search in Google Scholar

20. Elwood, J.C., Richert, D.A. & Westerfeld, W.W. (1972). A comparison of hypolipidemic drugs in the prevention of an orotic acid fatty liver. Biochem. Pharmacol., 21, 1127–1132. DOI: 10.1016/0006-2952(72)90106-2.10.1016/0006-2952(72)90106-2 Search in Google Scholar

21. Marx, J.V., Richert, D.A. & Westerfeld, W.W. (1970). Peripheral inhibition of thyroxine by thiohydantoins derived from amino acids. J. Med. Chem. 1970, 13, 1179–1181. DOI: 10.1021/jm00300a036.10.1021/jm00300a0365479861 Search in Google Scholar

22. Cheymol, J., Chabrier, P., Gay, Y. & Lavedan, J.P. (1951). [Inhibitory action on thyroid & molecular structure; 2. study of dithiocarbamates & their derivatives]. Arch. Int. Pharmacodyn. Ther. 1951, 88, 342–350. Search in Google Scholar

23. Cheymol, J., Chabrier, P. & Gay, Y., Arch. (1951). [Antithyroid action and molecular structure. I. A study of thiohydantoins and their methyl esters]. Int. Pharmacodyn. Ther. 1951, 87, 321–323. DOI: 10.1042/bj0490125.10.1042/bj0490125119746514848040 Search in Google Scholar

24. Archer, S., Unser, M.J. & Froelich, E. (1956). Some 5-(Oxoalkyl)-2-thiohydantoins and Their Derivatives. J. Am. Chem. Soc. 1956, 78, 6182. DOI: 10.1021/ja01604a064.10.1021/ja01604a064 Search in Google Scholar

25. Curran, A.C.W.U.S. Pat. 3,984,430, 1976. Search in Google Scholar

26. Nagpal, K.L.U.S. Pat. 4,473,393, 1984. Search in Google Scholar

27. Mo, B., Li, J. & Liang, S. (1997). A method for preparation of amino acid thiohydantoins from free amino acids activated by acetyl chloride for development of protein C-terminal sequencing. Anal. Biochem., 249(1), 207–211. DOI: 10.1006/abio.1997.2156.10.1006/abio.1997.21569212872 Search in Google Scholar

28. Cromwellt, L.D., Stark, G.R. (1969). Determination of the carboxyl termini of proteins with ammonium thiocyanate and acetic anhydride, with direct identification of the thiohydantoins. Biochemistry, 8, 4735–4740. DOI: 10.1021/bi00840a012,.10.1021/bi00840a0124904040 Search in Google Scholar

29. Nelson, J.V., Helber, M.J. & Brick, M.C.U.S. Pat. 5,695,917, 1997. Search in Google Scholar

30. Ooi, T., Fukui, T., Kobayashi, M., Ueno, K., Kagami, K., Suzuki, M. & Nishino, K.U.S. Pat. 5,482,814, 1996. Search in Google Scholar

31. Kandil, S.S., El-Hefnawy, G.B. & Baker, E.A. (2004). Thermal and spectral studies of 5-(phenylazo)-2-thiohydantoin and 5-(2- hydroxyphenylazo)-2-thiohydantoin complexes of cobalt(II), nickel(II) and copper(II). Thermochim. Acta, 414, 105–113. DOI: 10.1016/j.tca.2003.11.021.10.1016/j.tca.2003.11.021 Search in Google Scholar

32. Verma, S., Shrivastva, S. & Rani, P. (2012). Synthesis and spectroscopic studies of mixed ligand complexes of transition and inner transition metals with a substituted benzimidazole derivative and RNA bases. J. Chem. Pharm. Res., 2012, 4(1), 693–699. Search in Google Scholar

33. Usharani, M., Akila, E. & Rajavel, R. (2012). Mixed ligand Schiff base complexes: synthesis, spectral characterization and antimicrobial activity. J. Chem. Pharm. Res., 2012, 4(1), 726–731. Search in Google Scholar

34. Andrade, A., Namora, S.F. & Woisky, RG., (2000). Synthesis and characterization of a diruthenium–ibuprofenato complex: Comparing its anti-inflammatory activity with that of a copper(II)–ibuprofenato complex. J. Inorg. Biochem., 81, 23–27. DOI: 10.1016/S0162-0134(00)00106-9.10.1016/S0162-0134(00)00106-9 Search in Google Scholar

35. Ray, S.M. & Lahiri, S.C. (1990). Some reflections on “Future organizational trends of the ASA. J. Indian Chem. Soc., 67, 324–326. DOI: 10.1007/BF02691840.10.1007/BF02691840 Search in Google Scholar

36. Mathew, M., Palenik, G.J. & Clark, G.R. (1973). Crystal and molecular structures of chlorobis(acetone thiosemicarba-zone)nickel(II) chloride monohydrate and nitratobis(acetone thiosemicarbazone)nickel(II) nitrate monohydrate. Inorg. Chem., 12(2), 446–451. DOI: 10.1021/ic50120a041.10.1021/ic50120a041 Search in Google Scholar

37. Arya, P., Singh, N., Gadi, R. & Chandra, S. (2010). Preparation, characterization and antiulcer activity of mixed ligand complex of Zn (II) with Famotidine and Glycine. J. Chem. Pharm. Res., 2(6), 253–257. Search in Google Scholar

38. Hughes, M.N., Wilkinson, G., Gillard, R.D. & McCleverty, J.A. Comprehensive Coordination Chemistry, Vol 6, Pergamon Press, Oxford, 1987. Search in Google Scholar

39. Raman, M., Muthuraj, P.V., Ravichandran, S. & Kulandaisamy, A., (2003). Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone andp-anisidine and their antimicrobial activity. Acad. Sci (Chem. Sci.), 2003, 115(3), 161–167. https://www.ias.ac.in/article/fulltext/jcsc/115/03/0161-0167. Search in Google Scholar

40. Bauer, A.W., Kirby, W.M., Sherris, C. & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Amer. J. Clinical Pathology., 45, 493. DOI: 10.1093/ajcp/45.4_ts.493.10.1093/ajcp/45.4_ts.493 Search in Google Scholar

41. Pfaller, M.A., Burmeister, L., Bartlett, M.A. & Rinaldi, M.G., (1988). Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol. 26 (1988) 1437–1441. Search in Google Scholar

42. National Committee for Clinical Laboratory Standards, Performance Vol. antimicrobial susceptibility of Flavobacteria, 1997. Search in Google Scholar

43. National Committee for Clinical Laboratory Standards. 1993. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. National Committee for Clinical Laboratory Standards, Villanova, Pa. Search in Google Scholar

44. NakamotoK, Infra-Red Spectra of Inorganic and Coordinated Compounds, John Wiley, New York (1963) p. 167. Search in Google Scholar

45. Randall, H.M., Fowler, R.G., Fuson, N. & Dangl, J.R. Infrared Determination of Organic Structures. D. Van Nostrand, New York (1949). Search in Google Scholar

46. Lever, A.B.P., Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968. Search in Google Scholar

47. Lever, A.B.P. & Mantovani, E. (1971). Far-infrared and electronic spectra of some bis(ethylenediamine) and related complexes of copper(II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 1971, 10, 817–826. DOI: 10.1021/ic50098a031. Search in Google Scholar

48. Drago., R.S., Physical Methods in Inorganic Chemistry, Rein Hold Publishing Corporation, New York (1976) p. 395. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering