Accesso libero

Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Costes, J.P., Dahan, F., Fernandez, M.B.F., Garcia, M.I.F., Deibe, A.M.G. & Sanmartin, J. (1998). General synthesis of ‘salicylaldehyde half-unit complexes’: structural determination and use as synthon for the synthesis of dimetallic or trimetallic complexes and of ‘self-assembling ligand complexes’. Inorg. Chim. Acta. 274(1), 73–81. DOI: 10.1016/S0020-1693(97)05991-4.10.1016/S0020-1693(97)05991-4Search in Google Scholar

2. Dalia, S.F., Afsan, F., Hossain, M.S., Khan, M.N., Zakaria, C., Kudrat-E-Zahan, M. & Ali, M.H. (2018). A short review on chemistry of Schiff base metal complexes and their catalytic application. Int. J. Chem. Stud. 6(3), 2859–2866.Search in Google Scholar

3. Kumar, S., Dhar, D.N. & Saxena, P.N. (2009). Applications of metal complexes of Schiff bases-A review. J. Sci. Ind. Res. India. 68(3), 181–187.Search in Google Scholar

4. Nishinaga, A., Yamada, T., Fujisawa, H., Ishizaki, K., Ihara, H. & Matsuura, T. (1988) Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 48, 249–264. DOI: 10.1016/0304-5102(88)85009-0.10.1016/0304-5102(88)85009-0Search in Google Scholar

5. Sabaa, M.W., Mohamed, R.R. & Oraby, E.H. (2009). Vanillin–Schiff’s bases as organic thermal stabilizers and co--stabilizers for rigid poly(vinyl chloride). Eur. Polym. J. 45(11), 3072-3080. DOI: 10.1016/j.eurpolymj.2009.08.018.10.1016/j.eurpolymj.2009.08.018Search in Google Scholar

6. Tunçel, M. & Serin, S. (2006). Synthesis and characterization of new azo-linked Schiff bases and their cobalt(II), copper(II) and nickel(II) complexes. Transit. Met. Chem. 31, 805–812. DOI: 10.1007/s11243-006-0074-5.10.1007/s11243-006-0074-5Search in Google Scholar

7. Pandeya, S.N., Sriram, D., Nath, G. & De Clercq, E. (1999). Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino--2-methylmercapto quinazolin-4(3H)-one. Pharm. Acta. Helv. 74(1), 11–17. DOI: 10.1016/s0031-6865(99)00010-2.10.1016/S0031-6865(99)00010-2Search in Google Scholar

8. Kelley, J.L., Linn, J.A., Bankston, D.D., Burchall, C.J., Soroko, F.E. & Cooper, B.R. (1995). 8-Amino-3-benzyl-1,2,4--triazolo[4,3-a]pyrazines. Synthesis and anticonvulsant activity. J. Med. Chem. 38(18), 3676–3679. DOI: 10.1021/jm00018a029.10.1021/jm00018a0297658456Search in Google Scholar

9. Pavan, F.R., Maia, P., Leite, S.R.A., Deflon, V.M., Batista, A.A., Sato, D.N., Franzblau, S.G. & Leite, C.Q.F. (2010). Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem. 45(5), 1898–1905. DOI: 10.1016/j.ejmech.2010.01.028.10.1016/j.ejmech.2010.01.02820163897Search in Google Scholar

10. Upadhyay, K.K., Kumar, A., Upadhyay, S. & Mishra, P.C. (2008). Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases. J. Mol. Struct. 873, 5–16. DOI: 10.1016/j.molstruc.2007.02.031.10.1016/j.molstruc.2007.02.031Search in Google Scholar

11. Dutta, B., Some, S. & Ray, J.K. (2006). Thermal cyclization of 3-arylamino-3-(2-nitrophenyl)-propenal Schiff base hydrochlorides followed by triethyl phosphite mediated deoxygenation: a facile synthesis of quindolines. Tetrahedron Lett. 47(3), 377–379. DOI: 10.1016/j.tetlet.2005.11.007.10.1016/j.tetlet.2005.11.007Search in Google Scholar

12. Chandramouli, Shivanand, M.R., Nayanbhai, T.B., Bheemachari & Udupi, R.H. (2012). Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res. 4(2), 1151–1159.Search in Google Scholar

13. Chinnasamy, R.P., Sundararajan, R. & Govindaraj, S. (2010). Synthesis, characterization, and analgesic activity of novel Schiff base of isatin derivatives. J. Adv. Pharm. Tech. Res. 1(3), 342–347. DOI: 10.4103/0110-5558.72428.10.4103/0110-5558.72428325541022247869Search in Google Scholar

14. Chaubey, A.K. & Pandeya, S.N. (2012). Synthesis & anticonvulsant activity (chemo shock) of Schiff and Mannich bases of isatin derivatives with 2-amino pyridine (mechanism of action). Int. J. Pharmtech Res. 4(2), 590–598.Search in Google Scholar

15. Aboul-Fadl, T., Mohammed, F.A. & Hassan, E.A. (2003). Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (INH). Archiv. Pharm. Res. 26(10), 778–784. DOI: 10.1007/BF02980020.10.1007/BF02980020Search in Google Scholar

16. Miri, R., Razzaghi-asl, N. & Mohammadi, M.K. (2013). QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J. Mol. Mod. 19(2), 727–735. DOI: 10.1007/s00894-012-1586-x.10.1007/s00894-012-1586-xSearch in Google Scholar

17. Avaji, P.G., Kumar, C.H.V., Patil, S.A., Shivananda, K.N. & Nagaraju, C. (2009). Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazine. Eur. J. Med. Chem. 44(9), 3552–3559. DOI: 10.1016/j.ejmech.2009.03.032.10.1016/j.ejmech.2009.03.032Search in Google Scholar

18. Rao, S.N., Kathale, N., Rao, N.N. & Munshi, K.N. (2007). Catalytic air oxidation of olefins using molybdenum dioxo complexes with dissymmetric tridentate O,N,S-donor Schiff base ligands derived from o-hydroxyacetophenone and S-benzyldithiocarbazate or S-methyldithiocarbazate. Inorg. Chim. Acta. 360(14), 4010–4016. DOI: 10.1016/j.ica.2007.05.035.10.1016/j.ica.2007.05.035Search in Google Scholar

19. Iwakura, I., Ikeno, T. & Yamada, T. (2004). Proposal for the metallacycle pathway during the cyclopropanation catalyzed by cobalt−Schiff base complexes. Org. Lett. 6(6), 949–952. DOI: 10.1021/ol036505m.10.1021/ol036505mSearch in Google Scholar

20. Nishinaga, A., Yamada, T., Fujisawa, H., Ishizaki, K., Ihara, H. & Matsuura, T. (1988). Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 48, 249–264. DOI: 10.1016/0304-5102(88)85009-0.10.1016/0304-5102(88)85009-0Search in Google Scholar

21. Al-Shboul, T.M.A., Ziemann, S., Görls, H., Jazzazi, T.M.A., Krieck, S. & Westerhausen, M. (2018). Synthesis of dipotassium 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl derivatives and use as ligand transfer reagent. Eur. J. Inorg. Chem. 2018(14), 1563–1570. DOI: 10.1002/ejic.201701472.10.1002/ejic.201701472Search in Google Scholar

22. Al-Shboul, T.M.A., Ziemann, S., Görls, H., Krieck, S. & Westerhausen, M. (2019). Substituted 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl complexes of zinc. Z. Anorg. Allg. Chem. 645(3), 292–300. DOI: 10.1002/zaac.201800404.10.1002/zaac.201800404Search in Google Scholar

23. Jazzazi, T.M.A., Ababneh, T.S. & Abboushi, E.K. (2019). Zinc(II) complexes of symmetrical tetradentate Schiff base ligands derived from 2,2’-diamino-6,6’-dibromo-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde: synthesis, characterization and computational study. Jordan J. Chem.14(2), 81–87.Search in Google Scholar

24. Carlin, R.B. & Foltz, G.E. (1956). Ullmann synthesis of six dimethyldinitrobiphenyls and their reduction to the corresponding diaminodimethylbiphenyls. J. Am. Chem. Soc. 78(9), 1997–2000. DOI: 10.1021/ja01590a065.10.1021/ja01590a065Search in Google Scholar

25. Spartan’18 Wavefunction. Inc. Irvine, CA.Search in Google Scholar

26. Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652. DOI: 10.1063/1.464913.10.1063/1.464913Search in Google Scholar

27. Becke, A.D. (1996). Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104(3), 1040–1046. DOI: 10.1063/1.470829.10.1063/1.470829Search in Google Scholar

28. Lee, C., Yang, W. & Parr, RG. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37(2), 785–789. DOI: 10.1103/PhysRevB.37.785.10.1103/PhysRevB.37.785Search in Google Scholar

29. Petersson, G.A., Bennett, A., Tensfeldt, T.G., Al-Laham, M.A & Shirley, W.A. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89(4), 2193–2218. DOI: 10.1063/1.455064.10.1063/1.455064Search in Google Scholar

30. Petersson, G.A., Tensfeldt, T.G. & Montgomery, J.A. (1991). A complete basis set model chemistry. III. The complete basis setquadratic configuration interaction family of methods. J. Chem. Phys. 94(9), 6091–6101. DOI: 10.1063/1.460448.10.1063/1.460448Search in Google Scholar

31. Talib, W.H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 85(3), 27. DOI: 10.3390/scipharm85030027.10.3390/scipharm85030027562051528671634Search in Google Scholar

32. Jayaseelan, P., Prasad, S., Vedanayaki, S. & Rajavel, R. (2016). Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arab. J. Chem. 9, 668–677. DOI: 10.1016/j.arabjc.2011.07.029.10.1016/j.arabjc.2011.07.029Search in Google Scholar

33. Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J. & Abdullah, B. (2017). Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 10, 1639–1644. DOI: 10.1016/j.arabjc.2013.06.006.10.1016/j.arabjc.2013.06.006Search in Google Scholar

34. Thaker, B.T., Surati, K.R., Oswal, S., Jadeja, R.N. & Gupta, V.K. (2007). Synthesis, spectral, thermal and crystal-lographic investigations on oxovanadium(IV) and manganese(III) complexes derived from heterocyclic β-diketone and 2-amino ethanol. Struct. Chem. 18, 295–310. DOI: 10.1007/s11224-006-9134-x.10.1007/s11224-006-9134-xSearch in Google Scholar

35. Miessler, G. & Tarr, D. (2005). Inorganic Chemistry (3rd ed). New Jersey, USA: Pearson Prentice-Hall.Search in Google Scholar

36. Ababneh, T.S., Al-Shboul, T.M.A., Jazzazi, T.M.A., Alomari, M.I., Görls, H. & Westerhausen, M. (2020). Crystallo-graphic and computational study of the structure of copper(II) 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl. Transit. Met. Chem. 45. DOI: 10.1007/s11243-020-00395-810.1007/s11243-020-00395-8Search in Google Scholar

37. Cheeseman, T.P., Hall, D. & Waters, T.N. (1966). The colour isomerism and structure of some copper co-ordination compounds. Part XII. The crystal structure of NN′-(2,2′-biphenyl)bis(salicylaldiminato)copper(II). J. Chem. Soc. A 1396–1406. DOI: 10.1039/J19660001396.10.1039/J19660001396Search in Google Scholar

38. Taha, Z.A., Ajlouni, A.M., Ababneh, T.S., Al-Momani, W., Hijazi, A.K., Al Masri, M. & Hammad, H. (2017). DFT computational studies, biological and antioxidant activities, and kinetic of thermal decomposition of 1,10-phenanthroline lanthanide complexes. Struct. Chem. 28, 1907–1918. DOI: 10.1007/s11224-017-0975-2.10.1007/s11224-017-0975-2Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering