Accesso libero

Adsorption of Congo Red from Aqueous Solutions by Porous Soybean Curd Xerogels

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Parida, K.M ., Sahu, S., Reddy, K.H. & Sahoo, P.C. (2011). A Kinetic, Thermodynamic, and Mechanistic Approach toward Adsorption of Methylene Blue over Water-Washed Manganese Nodule Leached Residues. Ind. Eng. Chem. Res. 50, 843-848.DOI: 10.1021/ie101866a.10.1021/ie101866aOpen DOISearch in Google Scholar

2. Munagapati, V.S. & Kim, D.S. (2017). Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotox Environ Safe. 141, 226-234. DOI: 10.1016/j.ecoenv.2017.03.036.10.1016/j.ecoenv.2017.03.03628349874Open DOISearch in Google Scholar

3. Du, Q.J., S un, J.K., Li, Y.H., Yang, X.X., Wang, X.H., Wang, Z.H. & Xia, L.H. (2014). Highly enhanced adsorption of congo red onto graphene oxide/chitosan fi bers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 245, 99-106.DOI: 10.1016/j.cej.2014.02.006.10.1016/j.cej.2014.02.006Open DOISearch in Google Scholar

4. Chong, M.N. , Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res. 44, 2997-3027. DOI: 10.1016/j. watres.2010.02.039.10.1016/j.watres.2010.02.03920378145Open DOISearch in Google Scholar

5. Saitoh, T., Yamaguchi, M. & Hiraide, M. (2011). Surfactant- coated aluminum hydroxide for the rapid removal and biodegradation of hydrophobic organic pollutants in water. Water Res. 45, 1879-1889. DOI: 10.1016/j.watres.2010.12.009.10.1016/j.watres.2010.12.00921193213Open DOISearch in Google Scholar

6. Chen, L., M oon, J.H., Ma, X.X., Zhang, L., Chen, Q., Chen, L.N., Peng, R.Q., Si, P.C., Feng, J.K., Li, Y.H., Lou, J. & Ci, L.J. (2018). High performance graphene oxide nanofi ltration membrane prepared by electrospraying for wastewater purifi cation.Carbon. 130, 487-494. DOI: 10.1016/j.carbon.2018.01.062.10.1016/j.carbon.2018.01.062Open DOISearch in Google Scholar

7. Apul, O.G. & Karanfi l, T. (2015). Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research. 68, 34-55. DOI: 10.1016/j.watres.2014.09.032.10.1016/j.watres.2014.09.03225462715Open DOISearch in Google Scholar

8. Zhuang, Y., Yu, F., Chen, J.H. & Ma, J. (2016). Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: Comparison of single-network and double--network hydrogels. J. Environ. Chem. Eng. 4, 147-156. DOI: 10.1016/j.jece.2015.11.014.10.1016/j.jece.2015.11.014Search in Google Scholar

9. Chowdhury, S. & Balasubramanian, R. (2014). Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interfac. 204, 35-56. DOI: 10.1016/j.cis.2013.12.005.10.1016/j.cis.2013.12.00524412086Open DOISearch in Google Scholar

10. Yu, M., Li , J. & Wang, L.J. (2017). KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 310, 300-306. DOI: 10.1016/j.cej.2016.10.121.10.1016/j.cej.2016.10.121Search in Google Scholar

11. Pham, T.D. , Kobayashi, M. & Adachi, Y. (2015). Adsorption characteristics of anionic azo dye onto large alpha--alumina beads. Colloid Polym. Sci. 293, 1877-1886. DOI: 10.1007/s00396-015-3576-x.10.1007/s00396-015-3576-xOpen DOISearch in Google Scholar

12. Han, H.K., Wei, W., Jiang, Z.F., Lu, J.W., Zhu, J.J. & Xie, J.M. (2016). Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloid Surface A. 509, 539-549. DOI: 10.1016/j.colsurfa.2016.09.056.10.1016/j.colsurfa.2016.09.056Open DOISearch in Google Scholar

13. Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C. & Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Micropor Mesopor Mat.235, 78-86. DOI:10.1016/j.micromeso.2016.08.007.10.1016/j.micromeso.2016.08.007Open DOISearch in Google Scholar

14. Wang, Y.G. , Hu, L.H., Zhang, G.Y., Yan, T., Yan, L.G., Wei, Q. & Du, B. (2017). Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J. Colloid Interf. Sci. 494, 380-388. DOI: 10.1016/j.jcis.2017.01.105.10.1016/j.jcis.2017.01.10528167426Open DOISearch in Google Scholar

15. Liu, T.H., Li, Y.H., Du, Q.J., Sun, J.K., Jiao, Y.Q., Yang, G.M., Wang, Z.H., Xia, Y.Z., Zhang, W., Wang, K.L., Zhu, H.W. & Wu, D.H. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloid Surface B. 90, 197-203.DOI: 10.1016/j.colsurfb.2011.10.019.10.1016/j.colsurfb.2011.10.01922036471Open DOISearch in Google Scholar

16. He, A.L., Lu, R.Z., Wang, Y.Y., Xiang, J., Li, Y.L. & He, D.W. (2017). Adsorption Characteristic of Congo Red Onto Magnetic MgFe2O4 Nanoparticles Prepared via the Solution Combustion and Gel Calcination Process. J. Nanosci. Nanotech. 17, 3967-3974. DOI:10.1166/jnn.2017.13091.10.1166/jnn.2017.13091Open DOISearch in Google Scholar

17. Nassar, M. Y., Mohamed, T.Y., Ahmed, I.S. & Samir, I. (2017). MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An effi cient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq. 225: 730-740. DOI: 10.1016/j.molliq.2016.10.135.10.1016/j.molliq.2016.10.135Open DOISearch in Google Scholar

18. Nassar, M. Y., Ali, E.I. & Zakaria, E.S. (2017). Tunable auto-combustion preparation of TiO2 nanostructures as effi cient adsorbents for the removal of an anionic textile dye. Rsc. Adv.7, 8034-8050. DOI: 10.1039/c6ra27924d.10.1039/c6ra27924dOpen DOISearch in Google Scholar

19. Chen, L., Li, Y.H., Du, Q.J., Wang, Z.H., Xia, Y.Z., Yedinak, E., Lou, J. & Ci, L.J. (2017). High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohyd Polym. 155, 345-353. DOI: 10.1016/j. carbpol.2016.08.047.10.1016/j.carbpol.2016.08.04727702521Open DOISearch in Google Scholar

20. Yang, X.X. , Li, Y.H., Du, Q.J., Wang, X.H., Hu, S., Chen, L., Wang, Z.H., Xia, Y.Z. & Xia, L.H. (2016). Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites. J. Nanosci. Nanotech.10.1166/jnn.2016.1070827433669Search in Google Scholar

16, 1775-1782. DOI: 10.1166/jnn.2016.10708. 21. Chen, L., Li, Y.H., Hu, S., Sun, J.K., Du, Q.J., Yang, X.X., Ji, Q., Wang, Z.H., Wang, D.C. & Xia, Y.Z. (2016). Removal of methylene blue from water by cellulose/graphene oxide fi bres. J. Exp. Nanosci. 11, 1156-1170. DOI: 10.1080/17458080.2016.1198499.10.1166/jnn.2016.10708.21...H...K.Q.J.X.X.,JiQ.Z.H..C.&Xia,Y.Z.(2016).methylene/grapheneoxidefibres.J.Exp.Nanosci.11,1156-1170.DOI:10.1080/17458080.2016.1198499Open DOISearch in Google Scholar

22. Li, Y.H., Sun, J.K., Du, Q.J., Zhang, L.H., Yang, X.X., Wu, S.L., Xia, Y.Z., Wang, Z.H., Xia, L.H. & Cao, A.Y. (2014). Mechanical and dye adsorption properties of graphene oxide/ chitosan composite fi bers prepared by wet spinning. Carbohyd Polym. 102, 755-761. DOI:10.1016/j.carbpol.2013.10.094.10.1016/j.carbpol.2013.10.094Open DOISearch in Google Scholar

23. Li, Y.H., Du, Q.J., Liu, T.H., Qi, Y., Zhang, P., Wang, Z.H. & Xia, Y.Z. (2011). Preparation of activated carbon from Enteromorpha prolifera and its use on cationic red X-GRL removal. Appl Surf Sci. 257, 10621-10627. DOI: 10.1016/j. apsusc.2011.07.060.10.1016/j.apsusc.2011.07.060Open DOISearch in Google Scholar

24. Rui, X., X ing, G.L., Zhang, Q.Q., Zare, F., Li, W. & Dong, M.S. (2016). Protein bioaccessibility of soymilk and soymilk curd prepared with two Lactobacillus plantarum strains as assessed by in vitro gastrointestinal digestion. Innov Food Sci. Emerg. 38, 155-159. DOI: 10.1016/j.ifset.2016.09.029.10.1016/j.ifset.2016.09.029Open DOISearch in Google Scholar

25. Kumar, R., Liu, D. & Zhang, L. (2008). Advances in proteinous biomaterials. J. Biobased Mater. Bio. 2: 1-24. DOI: 10.1166/jbmb.2008.204.10.1166/jbmb.2008.204Open DOISearch in Google Scholar

26. Liu, D.G., Tian, H.F., Kumar, R. & Zhang, L.N. (2009). Self-Assembly of Nano Hydroxyapatite or Aragonite Induced by Molecular Recognition to Soy Globulin 7S or 11S. Macromol. Rapid Comm. 30, 1498-1503. DOI: 10.1002/marc.200900265.10.1002/marc.200900265Open DOISearch in Google Scholar

27. Liu, D.G., Chen, H.H., Chang, P.R., Wu, Q.L., Li, K.F. & Guan, L.T. (2010). Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresource Technol. 101, 6235-6241. DOI: 10.1016/j. biortech.2010.02.107.10.1016/j.biortech.2010.02.107Open DOISearch in Google Scholar

28. Liu, D.G., Li, Z.H., Li, W., Zhong, Z.R., Xu, J.Q., Ren, J.J. & Ma, Z.S. (2013). Adsorption Behavior of Heavy Metal Ions from Aqueous Solution by Soy Protein Hollow Microspheres. Ind. Engin. Chem. Res. 52, 11036-11044. DOI: 10.1021/ie401092f.10.1021/ie401092fOpen DOISearch in Google Scholar

29. Lodha, P. & Netravali, A.N. (2005). Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind. Crop Prod. 21,49-64. DOI: 10.1016/j.indcrop.2003.12.006.10.1016/j.indcrop.2003.12.006Open DOISearch in Google Scholar

30. Subirade, M., Kelly, I., Gueguen, J. & Pezolet, M. (1998). Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films. Int. J. Biol. Macromol. 23, 241-249. DOI: 10.1016/S0141-8130(98)00052-X.10.1016/S0141-8130(98)00052-XOpen DOISearch in Google Scholar

31. Karnnet, S ., Potiyaraj, P. & Pimpan, V. (2005). Preparation and properties of biodegradable stearic acid-modifi ed gelatin fi lms. Polym Degrad Stabil. 90, 106-110. DOI: 10.1016/j.polymdegradstab.2005.02.016.10.1016/j.polymdegradstab.2005.02.016Open DOISearch in Google Scholar

32. Schmidt, V ., Giacomelli, C. & Soldi, V. (2005). Thermal stability of fi lms formed by soy protein isolate-sodium dodecyl sulfate. Polym Degrad Stabil. 87, 25-31. DOI: 10.1016/j.polymdegradstab.2004.07.003.10.1016/j.polymdegradstab.2004.07.003Open DOISearch in Google Scholar

33. Lin, J.X., Zhan, S.L., Fang, M.H., Qian, X.Q. & Yang, H. J. Environ. Manage. 87, 193 (2008).10.1016/j.jenvman.2007.01.001Search in Google Scholar

34. Chen, L., Li, Y., Chen, L., Li, N., Dong, C., Chen, Q., Liu, B., Ai, Q., Si, P. & Feng, J. (2018). A large-area free-standing graphene oxide multilayer membrane with high stability for nanofi ltration applications. Chem. Eng. J. 345, 536-544.DOI: 10.1016/j.cej.2018.03.136.10.1016/j.cej.2018.03.136Open DOISearch in Google Scholar

35. El Qada, E.N., Allen, S.J. & Walker, G.M. (2006). Adsorption of basic dyes onto activated carbon using microcolumns. Ind. Eng. Chem. Res. 45, 6044-6049. DOI: 10.1021/ie060289e.10.1021/ie060289eOpen DOISearch in Google Scholar

36. Gupta, V.K ., Jain, R., Siddiqui, M.N., Saleh, T.A., Agarwal, S., Malati, S. & Pathak, D. (2010). Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Rhodamine-B onto Mustard Cake and Activated Carbon. J. Chem. Eng. Data. 55, 5225-5229. DOI: 10.1021/je1007857.10.1021/je1007857Open DOISearch in Google Scholar

37. Hu, Q.H., Qiao, S.Z., Haghseresht, F., Wilson, M.A. & Lu, G.Q. (2006). Adsorption study for removal of basic red dye using bentonite. Ind. Eng. Chem. Res. 45, 733-738. DOI: 10.1021/ie050889y.10.1021/ie050889yOpen DOISearch in Google Scholar

38. Sharma, Y. C., Uma, Sinha, A.S.K. & Upadhyay, S.N. (2010). Characterization and Adsorption Studies of Cocos nucifera L. Activated Carbon for the Removal of Methylene Blue from Aqueous Solutions. J. Chem. Eng. Data. 55, 2662-2667.DOI: 10.1021/je900937f.10.1021/je900937fOpen DOISearch in Google Scholar

39. Into, T., Okada, K., Inoue, N., Yasuda, M. & Shibata, K. (2002). Extracellular ATP regulates cell death of lymphocytes and monocytes induced by membrane-bound lipoproteins of Mycoplasma fermentans and Mycoplasma salivarium. Microbiol. Immunol. 46, 667-675. DOI: 10.1111/j.1348-0421.2002.tb02750.x.10.1111/j.1348-0421.2002.tb02750.x12477245Open DOISearch in Google Scholar

40. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221-2295.10.1021/ja02268a002Search in Google Scholar

41. Zenasni, M.A. , Meroufel, B., Merlin, A. & George, B. (2014). Adsorption of Congo Red from Aqueous Solution Using CTAB-Kaolin from Bechar Algeria. J. Surf. Engine.Mater. Adv. Tech. 04(06): 332-341. DOI: 10.4236/jsemat.2014.46037.10.4236/jsemat.2014.46037Open DOISearch in Google Scholar

42. Song, Z., Chen, L.F., Hu, J.C. & Richards, R. (2009). NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology. 20(27).10.1088/0957-4484/20/27/27570719531863Search in Google Scholar

DOI: Artn 27570710.1088/0957-4484/20/27/275707.Search in Google Scholar

43. Wang, L. & Wang, A.Q. (2007). Adsorption characteristics of Congo Red onto the chitelsan/montmorillonite nanocomposite. J. Hazard. Mater. 147, 979-985. DOI: 10.1016/j.jhazmat.2007.01.145.10.1016/j.jhazmat.2007.01.14517349744Open DOISearch in Google Scholar

44. Bulut, E., Ozacar, M. & Sengil, I.A. (2008). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mat. 154: 613-622. DOI: 10.1016/j.jhazmat.2007.10.071.10.1016/j.jhazmat.2007.10.07118055111Open DOISearch in Google Scholar

45. Chen, M., Chen, Y. & Diao, G.W. (2010). Adsorption Kinetics and Thermodynamics of Methylene Blue onto p-tert--Butyl-calix[4,6,8]arene-Bonded Silica Gel. J. Chem. Eng. Data. 55, 5109-5116. DOI: 10.1021/je1006696.10.1021/je1006696Open DOISearch in Google Scholar

46. Freundlich , H. M.F. (1906). Over the adsorption in solution. J. Phys. Chem. 57, 385-471.Search in Google Scholar

47. Karadag, D., Turan, M., Akgul, E., Tok, S. & Faki, A. (2007). Adsorption equilibrium and kinetics of reactive black 5 and reactive red 239 in aqueous solution onto surfactant modified zeolite. J. Chem. Eng. Data. 52, 1615-1620. DOI: 10.1021/je7000057.10.1021/je7000057Open DOISearch in Google Scholar

48. Duman, O. & Ayranci, E. (2006). Adsorption characteristics of benzaldehyde, sulphanilic acid, and p-phenolsulfonate from water, acid, or base solutions onto activated carbon cloth. Sep. Sci. Technol. 41, 3673-3692. DOI: 10.1080/01496390600915072.10.1080/01496390600915072Open DOISearch in Google Scholar

49. Lagergren, S. (1898) About the theory of so called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 24, 1-39.Search in Google Scholar

50. Ho, Y.S. & Chiang, C.C. (2001). Sorption studies of acid dye by mixed sorbents. Adsorption. 7, 139-147. DOI: 10.1023/A:1011652224816.10.1023/A:1011652224816Open DOISearch in Google Scholar

51. Weber, W.J . & Morris, J.C. (1963). Kinetics of Adsorption on Carbon From Solution. J. Sanit. Eng. D iv. 89, 31-60.10.1061/JSEDAI.0000430Search in Google Scholar

52. Hameed, B.H., Din, A.T.M. & Ahmad, A.L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 141, 819-825. DOI: 10.1016/j.jhazmat.2006.07.049.10.1016/j.jhazmat.2006.07.04916956720Open DOISearch in Google Scholar

53. Ma, J., Ji a, Y.Z., Jing, Y., Yao, Y. & Sun, J.H. (2012). Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigments. 93, 1441-1446. DOI: 10.1016/j.dyepig.2011.08.010.10.1016/j.dyepig.2011.08.010Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering