Accesso libero

Electrooxidation of phenol on carbon fibre-based anodes through continuous electrolysis of synthetic wastewater

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Torres, R.A., Torres, W., Peringer, P. & Pulgarin, C. (2003). Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity relationship assessment. Chemosphere 50, 97–104. DOI: 10.1016/S0045-6535(02)00487-3.10.1016/S0045-6535(02)00487-3Open DOISearch in Google Scholar

2. Rajkumar, D. & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. J. Hazard. Mater. B113, 123–129. DOI: 10.1016/j.jhazmat.2004.05.039.10.1016/j.jhazmat.2004.05.039Open DOISearch in Google Scholar

3. Pirvu, C., Banu, A., Radovici, O. & Marcu, M. (2008). Application of electrochemical impedance spectroscopy (EIS) to study of phenolic films. Rev. Roum. Chim. 53(11), 1007–1015.Search in Google Scholar

4. Tasic, Z., Gupta, V.K. & Antonijevic, M.M. (2014). The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation. Int. J. Electrochem. Sci. 9, 3473–3490.10.1016/S1452-3981(23)08025-2Search in Google Scholar

5. Yang, X., Kirsch, J., Fergus, J. & Simonian, A. (2013). Modeling analysis of electrode fouling during electrolysis of phenolic compounds. Electrochim. Acta 94, 259–268. DOI: 10.1016/j.electacta.2013.01.019.10.1016/j.electacta.2013.01.019Open DOISearch in Google Scholar

6. Li, X., Cui, Y., Feng, Y., Xie, Z. & Gu, J. (2005). Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 39, 1972–1981. DOI: 10.1016/j.watres.2005.02.021.10.1016/j.watres.2005.02.021Open DOISearch in Google Scholar

7. Feng, Y.J. & Li, X.Y. (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37, 2399–2407. DOI: 10.1016/S0043-1354(03)00026-5.10.1016/S0043-1354(03)00026-5Open DOISearch in Google Scholar

8. Li, M., Feng, C., Hu, W., Zhang, Z. & Sugiura, N. (2009). Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt. J. Hazard. Mater. 162, 455–462. DOI: 10.1016/j.jhazmat.2008.05.063.10.1016/j.jhazmat.2008.05.06318599203Search in Google Scholar

9. Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L. & Zhou, M. (2013).Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 228, 455–467. DOI: 10.1016/j.cej.2013.05.033.10.1016/j.cej.2013.05.033Open DOISearch in Google Scholar

10. Comninellis, Ch. & Pulgarin, C. (1993). Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108–112.10.1007/BF00246946Search in Google Scholar

11. Arslan, G., Yazici, B. & Erbil, M. (2005). The effect of pH, temperature and concentration on electrooxidation of phenol. J. Hazard. Mater. B124, 37–43. DOI: 10.1016/j.jhazmat.2003.09.015.10.1016/j.jhazmat.2003.09.01516046062Open DOISearch in Google Scholar

12. Dos Santos, I.D., Afonso, J.C. & Dutra, A.J.B. (2011). Electrooxidation of phenol on a Ti/RuO2 anode: Effect of some electrolysis parameters. J. Braz. Chem. Soc. 22(5), 875–883.10.1590/S0103-50532011000500009Search in Google Scholar

13. Krawczyk, P., Rozmanowski, T., Gurzęda, B. & Osińska, M. (2016). Process of phenol electrooxidation on the expanded graphite electrode accompanied by the in-situ anodic regeneration. J. Electroanal. Chem. 775, 228–234. DOI: 10.1016/j.jelechem.2016.06.010.10.1016/j.jelechem.2016.06.010Open DOISearch in Google Scholar

14. Awad, Y.M. & Abuzaid, N.S. (1999). Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 34(4), 699–708.10.1081/SS-100100675Search in Google Scholar

15. Mu’azu, N.D., Al-Yahya, M., Al-Haj-Ali, A.M. & Abdel- Magid, I.M. (2016). Specific energy consumption reduction during pulsed electrochemical oxidation of phenol using graphite electrodes. J. Environ. Chem. Eng. 4, 2477–2486. DOI: 10.1016/j.jece.2016.04.026.10.1016/j.jece.2016.04.026Open DOISearch in Google Scholar

16. Hussain, S.N., Roberts, E.P.L., Asghar, H.M.A., Campen, A.K. & Brown, N.W. (2013). Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electrochim. Acta 92, 20–30. DOI: 10.1016/j.electacta.2013.01.020.10.1016/j.electacta.2013.01.020Open DOISearch in Google Scholar

17. Jin, P., Chang, R., Liu, D., Zhao, K., Zhang, L. & Ouyang, Y. (2014). Phenol degradation in an electrochemical system with TiO2/activated carbon fiber as electrode. J. Environ. Chem. Eng. 2, 1040–1047. DOI: 10.1016/j.jece.2014.03.023.10.1016/j.jece.2014.03.023Open DOISearch in Google Scholar

18. Duan, F., Li, Y., Cao H., Wang, Y., Crittenden, J.C. & Zhang, Y. (2015). Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere 125, 205–211. DOI: 10.1016/j.chemosphere.2014.12.065.10.1016/j.chemosphere.2014.12.06525585871Open DOISearch in Google Scholar

19. Hammani, H., Boumya, W., Laghrib, F., Farahi, A., Lahrich, S., Aboulkas, A. & El Mhammedi, M.A. (2017). Electrocatalytic effect of Al2O3 supported onto activated carbon in oxidizing phenol at graphite electrode. Mater. Today Chem. 3, 27–36. DOI: 10.1016/j.mtchem.2017.01.002.10.1016/j.mtchem.2017.01.002Open DOISearch in Google Scholar

20. Britto-Costa, P.H. & Ruotolo, L.A.M. (2012). Phenol removal from wastewaters by electrochemical oxidation using boron doped diamond (BDD) and Ti/Ti0.7Ru0.3O2 DSA® electrodes. Braz. J. Chem. Eng. 29(4), 763–773.10.1590/S0104-66322012000400008Search in Google Scholar

21. Jarrah, N. & Mu’azu, N.D. (2016). Simultaneous electrooxidation of phenol, CN, S2− and NH4+ in synthetic wastewater using boron doped diamond anode. J. Environ. Chem. Eng. 4, 2656–2664. DOI: 10.1016/j.jece.2016.04.011.10.1016/j.jece.2016.04.011Open DOISearch in Google Scholar

22. Piotrowska, G. & Pierozynski, B. (2017). Electrodegradation of phenol through continuous electrolysis of synthetic wastewater on platinized titanium and stainless steel anodes. Int. J. Electrochem. Sci. 12, 4444–4455. DOI: 10.20964/2017.05.74.10.20964/2017.05.74Open DOISearch in Google Scholar

23. Pierozynski, B. & Mikolajczyk, T. (2012). Hydrogen evolution reaction at Ru-modified carbon fibre in 0.5 M H2SO4. Int. J. Electrochem. Sci. 7, 9697–9706.10.1016/S1452-3981(23)16230-4Search in Google Scholar

24. Pierozynski, B. (2013). Electrooxidation of ethanol on Pd-modified carbon fibre tow material. Int. J. Electrochem. Sci. 8, 634–642.10.1016/S1452-3981(23)14046-6Search in Google Scholar

25. Pierozynski, B. (2013). Hydrogen evolution reaction at Pd-modified carbon fibre and nickel-coated carbon fibre materials. Int. J. Hydrogen Energy 38, 7733–7740. DOI: 10.1016/j.ijhydene.2013.04.092.10.1016/j.ijhydene.2013.04.092Open DOISearch in Google Scholar

26. Pierozynski, B. & Mikolajczyk, T. (2017). Enhancement of ethanol oxidation reaction on Pt (PtSn)-activated nickel foam through in situ formation of nickel oxy-hydroxide layer. Electrocatalysis 8, 252–260. DOI: 10.1007/s12678-017-0362-1.10.1007/s12678-017-0362-1Search in Google Scholar

27. Dolatto, R.G., Messerschmidt, I., Pereira, B.F., Silveira, C.A.P. & Abate, G. (2012). Determination of phenol and o-cresol in soil extracts by flow injection analysis with spectrophotometric detection. J. Braz. Chem. Soc. 23 (5), 970–976.10.1590/S0103-50532012000500025Search in Google Scholar

28. Cun-guang, Y. (1998). Progress of optical determination for phenolic compounds in sewage. J. Environ. Sci. 10(1), 76–86.Search in Google Scholar

29. Al-Maznai, H. & Conway, B.E. (2001). Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification. J. Serb. Chem. Soc. 66(11–12), 765–784.10.2298/JSC0112765ASearch in Google Scholar

30. Berenguer. R., Sieben, J.M., Quijada, C. & Morallon, E. (2016). Electrocatalytic degradation of phenol on Pt- and Rudoped Ti/SnO2-Sb anodes in an alkaline medium. Appl. Catal. B: Environ. 199, 394–404. DOI: 10.1016/j.apcatb.2016.06.038.10.1016/j.apcatb.2016.06.038Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering