INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Saxena, R.K., Anand, P., Saran, S. & Isar, J. (2009). Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 27, 895-913. DOI: 10.1016/j.biotechadv.2009.07.003.10.1016/j.biotechadv.2009.07.003Search in Google Scholar

2. Nakamura, Ch.E. & Whited, G.M. (2009). Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454-459. DOI: 10.1016/j. copbio.2003.08.005.Search in Google Scholar

3. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, Ch. & Soucaille, P. (1993). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Appl. Microbiol. Biotechnol. 38, 453-457. DOI: 10.1073_pnas.0734105100.Search in Google Scholar

4. Metsoviti, M., Zeng, An.P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.10.1016/j.jbiotec.2012.11.018Search in Google Scholar

5. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii. New Biotechol. 29, 199-205. DOI: 10.1016/j.nbt.2011.05.010.10.1016/j.nbt.2011.05.010Search in Google Scholar

6. Boenigk, R., Bowien, S. & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl. Microbiol. Biotechnol. 38, 453-457. DOI: 10.1007/BF00242936.10.1007/BF00242936Search in Google Scholar

7. Colin, T., Bories, A., Lavigne, C. & Moulin, G. (2001). Effects of Acetate and Butyrate During Glycerol Fermentation by Clostridium butyricum. Curr. Microbiol. 43, 238-243. DOI: 10.1007/s002840010294.10.1007/s002840010294Search in Google Scholar

8. Ferreira, T.F., Ribeiro, R.R., Ribeiro, C.M.S., Freire, D.M.G. & Coelho, M.A.Z. (2012). Evaluation of 1,3-Propanediol Production from Crude Glycerol by Citrobacter freundii ATCC 8090. Chem. Engin. Transactions. 27, 157-162. DOI: 10.3303/CET1438080.Search in Google Scholar

9. Barbirato, F., Grivet, J.P., Soucaille, P. & Bories, A. (1996). 3-Hydroxypropionaldehyde, an Inhibitory Metabolite of Glycerol Fermentation to 1,3-Propanediol by Enterobacterial Species. Appl. Environ. Microbiol. 62(4), 1448-1451.10.1128/aem.62.4.1448-1451.1996Search in Google Scholar

10. Tomczak, W. & Gryta, M. (2013). The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Pol. J. Chem. Tech. 15(3), 115-120. DOI: 10.2478/pjct-2013-0057.10.2478/pjct-2013-0057Search in Google Scholar

11. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Ind. Crops Prod. 7, 281-289. DOI: 10.1016/S0926-6690(97)00059-9.10.1016/S0926-6690(97)00059-9Search in Google Scholar

12. Yanga, Ch., Jianga, P., Xiaoa, S., Zhanga, Ch., Loub, K. & Xinga, X.H. (2011). Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochem. Eng. J. 57, 55-62. DOI:10.1016/j.bej.2011.08.008.10.1016/j.bej.2011.08.008Search in Google Scholar

13. Russel, J.B. (1992). Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J. Appl. Bacteriol. 73, 363-370. DOI: 10.1111/j.1365-2672.1992.tb04990.x.10.1111/j.1365-2672.1992.tb04990.xSearch in Google Scholar

14. Biebl, H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use a pH-auxostat. Appl Microbiol. Biotechnol. 35, 701-705. DOI: 10.1007/BF00169880.10.1007/BF00169880Search in Google Scholar

15. Colin, T., Bories, A. & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54, 201-205. DOI: 10.1007/s002530000365.10.1007/s00253000036510968633Search in Google Scholar

16. Zeng, A.P., Ross, A., Biebl, H., Tag, C., Günzel, B. & Deckwer, W.D. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiellia pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902-911. DOI: 10.1002/bit.260440806.10.1002/bit.26044080618618908Search in Google Scholar

17. Homann, T., Tag, C., Biebl, H., Deckwer, W.D. & Schink, B. (1990). Fermentation of glycerol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol. 33, 121-126. DOI: 10.1007/BF00176511.10.1007/BF00176511Search in Google Scholar

18. Annand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Appl. Microbiol. Biotechnol. 90, 1267-1276. DOI: 10.1007/s00253-011-3161-2.10.1007/s00253-011-3161-221360149Search in Google Scholar

19. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii. New Biotechol. 29, 199-205. DOI: 10.1016/j.nbt.2011.05.010.10.1016/j.nbt.2011.05.01021689798Search in Google Scholar

20. Wu, R.Ch., Ren, H.J., Xu, Y. & Liu, D. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol. 73, 122-125. DOI: 10.1016/j. seppur.2010.03.013.Search in Google Scholar

21. Bastrzyk, J., Gryta, M. & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68 (6), 757-765. DOI: 10.2478/s11696-013-0520-8.10.2478/s11696-013-0520-8Search in Google Scholar

22. Himstedt, H.H., Marshall, K.M. & Wickramasinghe, S.R. (2011). pH-responsive nanofiltration membranes by surface modification. J. Membr. Sci. 366, 373-381. DOI: 10.1016/j.memsci.2010.10.027.10.1016/j.memsci.2010.10.027Search in Google Scholar

23. Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. J. Membr. Sci. 372, 145-153. DOI: 10.1016/j.memsci.2011.01.066.10.1016/j.memsci.2011.01.066Search in Google Scholar

24. Mohammad, A.W., Basha, R.K. & Leo, C.P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. J. Food Eng. 97, 510-518. DOI: 10.1016/j.jfoodeng.2009.11.010.10.1016/j.jfoodeng.2009.11.010Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering