INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Satterfield, C.N. (1996). Heterogeneous Catalysis in Industrial Practice (2nd ed.), Malabar, USA: Krieger Publishing Company.Search in Google Scholar

2. Kustov, A.L., Frey, A.M., Larsen, K.E., Johannessen, T., Nørskov, J.K. & Christensen, C.H. (2007). CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Appl. Catal. A-GEN 320, 98-104. DOI: 10.1016/j.apcata.2006.12.017. 10.1016/j.apcata.2006.12.017Search in Google Scholar

3. Galetti, C., Specchia, S., Saracco, G. & Specchia, V. (2010). CO- selective methanation over Ru- γAl2O3 catalysts in H2-rich gas for PEM FC applications. Chem. Eng. Sci. 65, 590-596, DOI: 10.1016/j.ces.2009.06.052.10.1016/j.ces.2009.06.052Search in Google Scholar

4. Znak, L., Kaszkur, Z. & Zieliński, J. (2010). Evolution of metal phase in the course of CO hydrogenation on potassium promoted Ni/ Al2O3 catalyst. Catal. Lett. 136, 92-95. DOI: 10.1007/s10562-009-0199-1.10.1007/s10562-009-0199-1Search in Google Scholar

5. Kim, S.H., Nam S.W., Lim, T.H. & Lee, H.I. (2008). Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water-gas shift and methanation. Appl. Catal. B- -ENVIRON 81, 97-104. DOI: 10.1016/j.apcatb.2007.12.009.10.1016/j.apcatb.2007.12.009Search in Google Scholar

6. Sehested, J., Dahl, S., Jacobsen, J. & Rostrup-Nielsen, R. (2005). Methanation of CO over nickel: mechanism and kinetics at high H2/CO ratios. J. Phys. Chem. B 109, 2432-2438. DOI: 10.1021/jp040239s.10.1021/jp040239sSearch in Google Scholar

7. Akin, A.N., Ataman, M., Aksoylu, A.E. & Önsan, Z.I. (2002). CO2 fixation by hydrogenation over coprecipitated Co/Al2O3. React. Kinet. Catal. Lett. 76(2), 265-270. DOI: 10.1023/A:1016579726726.10.1023/A:1016579726726Search in Google Scholar

8. Kowalczyk, Z., Stołecki, K., Raróg-Pilecka, W., Miśkiewicz, E., Wilczkowska, E. & Karpiński, Z. (2008). Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Appl. Catal. A-GEN 342, 35-39. DOI: 10.1016/j.apcata.2007.12.040.10.1016/j.apcata.2007.12.040Search in Google Scholar

9. Okuhara, T., Khimura, T., Kobayashi, K., Misono, M. & Yoneda, Y. (1984). Effects of dispersion in carbon monoxide adsorption and carbon monoxide hydrogenation over alumina- -supported ruthenium catalysts. Bull. Chem. Soc. Jpn. 57(4), 938-943. DOI: 10.1246/bcsj.57.938.10.1246/bcsj.57.938Search in Google Scholar

10. Londhe, V.P., Kamble, V.S. & Gupta, N.M. (1997). Effect of hydrogen reduction on the CO adsorption and methanation reaction over Ru/TiO2 and Ru/Al2O3 catalysts. J. Mol. Catal. A-CHEM 121, 33-44. DOI: 10.1016/S1381-1169(96)00449-9.10.1016/S1381-1169(96)00449-9Search in Google Scholar

11. VanderWiel, D.P., Pruski, M. & King, T.S. (1999). A kinetic study on the adsorption and reaction of hydrogen over silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide. J. Catal. 188, 186-202. DOI: 10.1006/jcat.1999.2646.10.1006/jcat.1999.2646Search in Google Scholar

12. Sakakini, B.H. (1997). Temperature-programmed surface reaction (TPSR) of pre-adsorbed carbon CO and CO/H2 synthesis over Ru-Cs/Al2O3 catalysts. J. Mol. Catal. A-CHEM 127, 203-209. DOI: 10.1016/S1381-1169(97)00131-3.10.1016/S1381-1169(97)00131-3Search in Google Scholar

13. Gupta, N.M., Londhe, V.P. & Kamble, V.S. (1997). Gas- -uptake, methanation, and microcalorimetric measurements on the coadsorption of CO and H2 over polycrystalline Ru and a Ru/TiO2 catalyst. J. Catal. 169, 423-437. DOI: 10.1006/ jact.1997.1718.10.1006/jcat.1997.1718Search in Google Scholar

14. Fujita, S.I. & Takezawa, N. (1997). Difference in the selectivity of CO and CO2 methanation reactions. Chem. Eng. J. 68(1), 63-68. DOI: 10.1016/S1385-8947(97)00074-0.10.1016/S1385-8947(97)00074-0Search in Google Scholar

15. Kowalczyk, Z., Stołecki, K., Raróg-Pilecka, W., Miśkiewicz, E., Wilczkowska, E. & Karpiński, Z. (2008). Catalytic properties of small ruthenium particles supported on carbon. Studies of carbon monoxide methanation. Pol. J. Chem. 82, 607-612.Search in Google Scholar

16. Rosowski, F., Hornung, A., Hinrichsen, O., Herein, D., Muhler, M. & Ertl, G. (1997). Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics. Appl. Catal. A-GEN 151(2), 443-460. DOI: 10.1016/S0926-860X(96)00304-3.10.1016/S0926-860X(96)00304-3Search in Google Scholar

17. Truszkiewicz, E., Raróg-Pilecka, W., Schmidt-Szałowski, K., Jodzis, S., Wilczkowska, E., Łomot, D., Kaszkur, Z., Karpiński, Z. & Kowalczyk, Z. (2009). Barium-promoted Ru/ carbon catalyst for ammonia synthesis: State of the system when operating. J. Catal. 265, 181-190. DOI: 10.1016/j.cat.2009.04.024.Search in Google Scholar

18. Kowalczyk, Z., Jodzis, S., Raróg, W., Zieliński, J. & Pielaszek, J. (1998). Effect of potassium and barium on the stability of a carbon-supported ruthenium catalyst for the synthesis of ammonia. Appl. Catal. A-GEN 173(2), 153-160. DOI: 10.1016/S0926-860X(98)00175. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering