This work is licensed under the Creative Commons Attribution 4.0 International License.
Al Dawsari, S., Anayi, F. and Packianather, M. (2024). Techno-Economic Analysis of Hybrid Renewable Energy Systems for Cost Reduction and Reliability Improvement Using Dwarf Mongoose Optimization Algorithm. Energy, 313, p. 133653. doi: 10.1016/j.energy.2024.133653Al DawsariS.AnayiF.PackianatherM.2024Techno-Economic Analysis of Hybrid Renewable Energy Systems for Cost Reduction and Reliability Improvement Using Dwarf Mongoose Optimization AlgorithmEnergy31313365310.1016/j.energy.2024.133653Open DOISearch in Google Scholar
Beyza, J. and Yusta, J. M. (2021). Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems After Cascading Failures. Energies, 14(7), p. 2028. doi: 10.3390/en14072028BeyzaJ.YustaJ. M.2021Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems After Cascading FailuresEnergies147202810.3390/en14072028Open DOISearch in Google Scholar
Böhringer, C., Cuntz, A., Harhoff, D. and Asane-Otoo, E. (2017). The Impact of the German Feed-in Tariff Scheme on Innovation: Evidence Based on Patent Filings in Renewable Energy Technologies. Energy Economics, 67, pp. 545–553. doi: 10.1016/j.eneco.2017.09.001BöhringerC.CuntzA.HarhoffD.Asane-OtooE.2017The Impact of the German Feed-in Tariff Scheme on Innovation: Evidence Based on Patent Filings in Renewable Energy TechnologiesEnergy Economics6754555310.1016/j.eneco.2017.09.001Open DOISearch in Google Scholar
Bouchekara, H. R., Sha’aban, Y. A., Shahriar, M. S., Abdullah, S. M. and Ramli, M. A. (2023). Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation. Sustainability, 15(14), p. 11073. doi: 10.3390/su151411073BouchekaraH. R.Sha’abanY. A.ShahriarM. S.AbdullahS. M.RamliM. A.2023Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery DegradationSustainability15141107310.3390/su151411073Open DOISearch in Google Scholar
Cabana-Jiménez, K., Candelo-Becerra, J. E. and Sousa Santos, V. (2022). Comprehensive Analysis of Microgrids Configurations and Topologies. Sustainability, 14(3), p. 1056. doi: 10.3390/su14031056Cabana-JiménezK.Candelo-BecerraJ. E.Sousa SantosV.2022Comprehensive Analysis of Microgrids Configurations and TopologiesSustainability143105610.3390/su14031056Open DOISearch in Google Scholar
Chandra, A., Singh, G. K. and Pant, V. (2020). Protection Techniques for DC Microgrid—A Review. Electric Power Systems Research, 187, p. 106439. doi: 10.1016/j.epsr.2020.106439ChandraA.SinghG. K.PantV.2020Protection Techniques for DC Microgrid—A ReviewElectric Power Systems Research18710643910.1016/j.epsr.2020.106439Open DOISearch in Google Scholar
Chang, F., Cui, X., Wang, M. and Su, W. (2021). Potential-Based Large-Signal Stability Analysis in DC Power Grids with Multiple Constant Power Loads. IEEE Open Access Journal of Power and Energy, 9, pp. 16–28. doi: 10.1109/OAJPE.2021.3132860ChangF.CuiX.WangM.SuW.2021Potential-Based Large-Signal Stability Analysis in DC Power Grids with Multiple Constant Power LoadsIEEE Open Access Journal of Power and Energy9162810.1109/OAJPE.2021.3132860Open DOISearch in Google Scholar
Dali, M., Charaabi, F. and Belhadj, J. (2022, October). Short-circuit fault analysis and protection of standalone AC and DC microgrids. In: 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). IEEE, Institut National des Sciences Appliquées et de Technologie Tunisia. (INSAT), Vol. 4, pp. 1–6.DaliM.CharaabiF.BelhadjJ.2022OctoberShort-circuit fault analysis and protection of standalone AC and DC microgridsIn:2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)IEEE, Institut National des Sciences Appliquées et de Technologie Tunisia. (INSAT)Vol.416Search in Google Scholar
Eskander, M. M. and Silva, C. A. (2023). Techno-Economic and Environmental Comparative Analysis for DC Microgrids in Households: Portuguese and French Household Case Study. Applied Energy, 349, p. 121495. doi: 10.1016/j.apenergy.2023.121495EskanderM. M.SilvaC. A.2023Techno-Economic and Environmental Comparative Analysis for DC Microgrids in Households: Portuguese and French Household Case StudyApplied Energy34912149510.1016/j.apenergy.2023.121495Open DOISearch in Google Scholar
Feng, W., Jin, M., Liu, X., Bao, Y., Marnay, C., Yao, C. and Yu, J. (2018). A Review of Microgrid Development in the United States—A Decade of Progress on Policies, Demonstrations, Controls, and Software Tools. Applied Energy, 228, pp. 1656–1668. doi: 10.1016/j.apenergy.2018.06.096FengW.JinM.LiuX.BaoY.MarnayC.YaoC.YuJ.2018A Review of Microgrid Development in the United States—A Decade of Progress on Policies, Demonstrations, Controls, and Software ToolsApplied Energy2281656166810.1016/j.apenergy.2018.06.096Open DOISearch in Google Scholar
Gerber, D. L., Nordman, B., Brown, R. and Poon, J. (2023). Cost Analysis of Distributed Storage in AC and DC Microgrids. Applied Energy, 344, p. 121218. doi: 10.1016/j.apenergy.2023.121218GerberD. L.NordmanB.BrownR.PoonJ.2023Cost Analysis of Distributed Storage in AC and DC MicrogridsApplied Energy34412121810.1016/j.apenergy.2023.121218Open DOISearch in Google Scholar
Jena, K., Panigrahi, C. K. and Gupta, K. K. (2021). A New 13-Level Switched-Capacitor Inverter with Reduced Device Count. Power Electronics and Drives, 6, pp. 26–41. doi: 10.2478/pead-2021-0005JenaK.PanigrahiC. K.GuptaK. K.2021A New 13-Level Switched-Capacitor Inverter with Reduced Device CountPower Electronics and Drives6264110.2478/pead-2021-0005Open DOISearch in Google Scholar
Kiptoo, M. K., Adewuyi, O. B., Furukakoi, M., Mandal, P. and Senjyu, T. (2023). Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty. Energies, 16(19), p. 6838. doi: 10.3390/en16196838KiptooM. K.AdewuyiO. B.FurukakoiM.MandalP.SenjyuT.2023Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and UncertaintyEnergies1619683810.3390/en16196838Open DOISearch in Google Scholar
Kumar, A. A. and Prabha, N. A. (2022). A Comprehensive Review of DC Microgrid in Market Segments and Control Technique. Heliyon, 8, p. e11694. doi: 10.1016/j.heliyon.2022.e11694KumarA. A.PrabhaN. A.2022A Comprehensive Review of DC Microgrid in Market Segments and Control TechniqueHeliyon8e1169410.1016/j.heliyon.2022.e11694Open DOISearch in Google Scholar
Meddeb, A., Sahbeni, N., Jmii, H., and Chebbi, S. (2018, March). Impact of distributed generation on the protection system in Tunisian distribution network. In: 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, Yasmine Hammamet, Tunisia, pp. 514–520.MeddebA.SahbeniN.JmiiH.ChebbiS.2018MarchImpact of distributed generation on the protection system in Tunisian distribution networkIn:2018 15th International Multi-Conference on Systems, Signals & Devices (SSD)IEEE, Yasmine Hammamet, Tunisia514520Search in Google Scholar
Mohamed, A., Refaat, S. S. and Abu-Rub, H. (2019). A Review on Big Data Management and Decision-Making in Smart Grid. Power Electronics and Drives, 4(39), pp. 1–13. doi: 10.2478/pead-2019-0011MohamedA.RefaatS. S.Abu-RubH.2019A Review on Big Data Management and Decision-Making in Smart GridPower Electronics and Drives43911310.2478/pead-2019-0011Open DOISearch in Google Scholar
Parvaneh, F. and Hammad, A. (2024). Application of Multi-Criteria Decision-Making (MCDM) to Select the Most Sustainable Power-Generating Technology. Sustainability, 16(8), p. 3287. doi: 10.3390/su16083287ParvanehF.HammadA.2024Application of Multi-Criteria Decision-Making (MCDM) to Select the Most Sustainable Power-Generating TechnologySustainability168328710.3390/su16083287Open DOISearch in Google Scholar
Punitha, S., Subramaniam, N. P. and Vimal Raj, P. A. D. (2024). A Comprehensive Review of Microgrid Challenges in Architectures, Mitigation Approaches, and Future Directions. Journal of Electrical Systems and Information Technology, 11(1), p. 60. doi: 10.1186/s43067-024-00188-4PunithaS.SubramaniamN. P.Vimal RajP. A. D.2024A Comprehensive Review of Microgrid Challenges in Architectures, Mitigation Approaches, and Future DirectionsJournal of Electrical Systems and Information Technology1116010.1186/s43067-024-00188-4Open DOISearch in Google Scholar
Rocchetta, R., Zio, E. and Patelli, E. (2018). A Power-Flow Emulator Approach for Resilience Assessment of Repairable Power Grids Subject to Weather-Induced Failures and Data Deficiency. Applied Energy, 210, pp. 339–350. doi: 10.1016/j.apenergy.2017.10.126RocchettaR.ZioE.PatelliE.2018A Power-Flow Emulator Approach for Resilience Assessment of Repairable Power Grids Subject to Weather-Induced Failures and Data DeficiencyApplied Energy21033935010.1016/j.apenergy.2017.10.126Open DOISearch in Google Scholar
Saaty, T. L. (2008). Decision Making with the Analytic Hierarchy Process. International Journal of Services Sciences, 1(1), pp. 83–98. doi: 10.1504/IJSSCI.2008.017590SaatyT. L.2008Decision Making with the Analytic Hierarchy ProcessInternational Journal of Services Sciences11839810.1504/IJSSCI.2008.017590Open DOISearch in Google Scholar
Saaty, T. L. and Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Springer Science & Business Media, New York.SaatyT. L.VargasL. G.2012Models, Methods, Concepts & Applications of the Analytic Hierarchy ProcessSpringer Science & Business MediaNew YorkSearch in Google Scholar
Siksnelyte, I., Zavadskas, E. K., Streimikiene, D. and Sharma, D. (2018). An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies, 11(10), p. 2754. doi: 10.3390/en11102754SiksnelyteI.ZavadskasE. K.StreimikieneD.SharmaD.2018An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development IssuesEnergies1110275410.3390/en11102754Open DOISearch in Google Scholar
Wang, F., Tian, J., Ling, J., Chen, Z. and Xu, Z. (2025). A Multi-Stage Resilience Analysis Framework of Critical Infrastructure Systems Based on Component Importance Measures. Reliability Engineering & System Safety, 256, p. 110720. doi: 10.1016/j.ress.2024.110720WangF.TianJ.LingJ.ChenZ.XuZ.2025A Multi-Stage Resilience Analysis Framework of Critical Infrastructure Systems Based on Component Importance MeasuresReliability Engineering & System Safety25611072010.1016/j.ress.2024.110720Open DOISearch in Google Scholar
Wang, H., Yan, S., Ju, D., Ma, N., Fang, J., Wang, S., Li, H., Zhang, T., Xie, Y. and Wang, J. (2023). Short-Term Photovoltaic Power Forecasting Based on A Feature Rise-Dimensional Two-Layer Ensemble Learning Model. Sustainability, 15(21), p. 15594. doi: 10.3390/su152115594WangH.YanS.JuD.MaN.FangJ.WangS.LiH.ZhangT.XieY.WangJ.2023Short-Term Photovoltaic Power Forecasting Based on A Feature Rise-Dimensional Two-Layer Ensemble Learning ModelSustainability15211559410.3390/su152115594Open DOISearch in Google Scholar
Yildiz, O. A., Cebi, S. and Yildiz, O. (2025). Multicriteria Decision Support for Sustainable Energy Planning: An Evaluation of Alternative Scenarios for the Solar Power Plant Site Selection. Environment, Development and Sustainability, pp. 1–35. doi: 10.1007/s10668-024-05943-1.YildizO. A.CebiS.YildizO.2025Multicriteria Decision Support for Sustainable Energy Planning: An Evaluation of Alternative Scenarios for the Solar Power Plant Site SelectionEnvironment, Development and Sustainability13510.1007/s10668-024-05943-1Open DOISearch in Google Scholar
Yodo, N. and Wang, P. (2016). Engineering Resilience Quantification and System Design Implications: A Literature Survey. Journal of Mechanical Design, 138(11), p. 111408. doi: 10.1115/1.4034223YodoN.WangP.2016Engineering Resilience Quantification and System Design Implications: A Literature SurveyJournal of Mechanical Design1381111140810.1115/1.4034223Open DOISearch in Google Scholar