Accesso libero

Innovative Hybrid War Strategy Optimization with Incremental Conductance for Maximum Power Point Tracking in Partially Shaded Photovoltaic Systems

, ,  e   
21 dic 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Figure 1.

General PV conversion chain. PV, photovoltaic.
General PV conversion chain. PV, photovoltaic.

Figure 2.

Equivalent circuit diagram of solar cell.
Equivalent circuit diagram of solar cell.

Figure 3.

Configuration of PV modules under different static PSCs. (A) Scenario 1—STC. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. PSCs, partial shading conditions; PV, photovoltaic; STC, standard test conditions.
Configuration of PV modules under different static PSCs. (A) Scenario 1—STC. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. PSCs, partial shading conditions; PV, photovoltaic; STC, standard test conditions.

Figure 4.

Flowchart of WSO algorithm. WSO, war strategy optimization.
Flowchart of WSO algorithm. WSO, war strategy optimization.

Figure 5.

Flowchart of hybrid WSO-IC Algorithm. WSO-IC, war strategy optimization-incremental conductance.
Flowchart of hybrid WSO-IC Algorithm. WSO-IC, war strategy optimization-incremental conductance.

Figure 6.

Diagram of the 426.3 W peak power PV system simulated in SIMULINK. PV, photovoltaic.
Diagram of the 426.3 W peak power PV system simulated in SIMULINK. PV, photovoltaic.

Figure 7.

Power Ppv and duty cycle under standard conditions (Scenario 1-STC). STC, standard test conditions.
Power Ppv and duty cycle under standard conditions (Scenario 1-STC). STC, standard test conditions.

Figure 8.

Power Ppv and duty cycle under PSCs (Scenario 2). PSCs, partial shading conditions.
Power Ppv and duty cycle under PSCs (Scenario 2). PSCs, partial shading conditions.

Figure 9.

Power Ppv and duty cycle under PSCs (Scenario 3). PSCs, partial shading conditions.
Power Ppv and duty cycle under PSCs (Scenario 3). PSCs, partial shading conditions.

Figure 10.

Power Ppv and duty cycle under PSCs (Scenario 4). PSCs, partial shading conditions.
Power Ppv and duty cycle under PSCs (Scenario 4). PSCs, partial shading conditions.

Figure 11.

Quantitative comparison between the performances of IC, P&O, WSO, and WSO-IC methods for different shading patterns. (A) Duty cycle tracking error and (B) power extraction efficiency. IC, incremental conductance; P&O, perturb and observe; WSO, war strategy optimization; WSO-IC, war strategy optimization-incremental conductance.
Quantitative comparison between the performances of IC, P&O, WSO, and WSO-IC methods for different shading patterns. (A) Duty cycle tracking error and (B) power extraction efficiency. IC, incremental conductance; P&O, perturb and observe; WSO, war strategy optimization; WSO-IC, war strategy optimization-incremental conductance.

Comparison of algorithm performance across different scenarios

Algorithm Convergence time (ms) Duty cycle Tracking error (%) Ppv (w) Efficiency (%)
Scenario 1: Ir1 = Ir2 = 1000 W/m2, T1 = T2 = 25 C, Pmpp = 426.3 W, Dopt G = 0.71721435
IC 648.689 0.7103 0.9641 426.130 99.96
P&O 628.276 0.7108 0.8943 426.124 99.96
WSO 352.368 0.7101 0.9919 426.106 99.95
WSO-IC 398.437 0.7116 0.7828 426.148 99.96

Scenario 2: Ir1 = 1000 W/m2, Ir2 = 400 W/m2, T1 = T2 = 25 C, Pmpp G = 207.4 W, Dopt G = 0.80383836
IC 768.902 0.5305 34.0041 189.453 91.35
P&O 517.483 0.5308 33.9668 189.450 91.35
WSO 254.545 0.7925 1.4105 204.705 98.70
WSO-IC 271.329 0.7938 1.2488 207.356 99.98

Scenario 3: Ir1 = 800 W/m2, Ir2 = 400 W/m2, T1 = T2 = 25 C, Pmpp G = 187.6 W, Dopt G = 0.55062217
IC 567.832 0.7704 39.9145 167.000 89.02
P&O 405.594 0.7699 39.8236 167.200 89.13
WSO 271.329 0.7714 40.0961 167.200 89.13
WSO-IC 442.281 0.5313 3.5092 187.600 100.00

Scenario 4: Ir1 = 600 W/m2, Ir2 = 400 W/m2, T1 = T2 = 25 C, Pmpp G = 184.6 W, Dopt G = 0.55110705
IC 623.776 0.7401 34.2933 125.800 68.15
P&O 433.566 0.7400 34.2752 125.900 68.20
WSO 338.462 0.7391 34.1119 125.700 68.09
WSO-IC 492.350 0.5378 2.4146 184.500 99.95

Electrical specifications of the boost converter_

Parameter Noun Value
Boost converter
L Inductance (mH) 1.1478
Cin Input capacitor (µF) 6,800
Cout Output capacitor (µF) 3,300
F PWM frequency (kHz) 10

Load
R Resistive load (Ω) 100

Performance comparison of the proposed WSO-IC with different MPPT algorithms

MPPT algorithm Efficiency (%) Tracking time (s)
P&O (Khatib and Muhsen, 2020) 96.08 0.321
FL (Khatib and Muhsen, 2020) 96.94 0.35
PSO (Khatib and Muhsen, 2020) 99.62 0.50
GWO (Berttahar et al., 2024) 97.08 0.78
HOA (Berttahar et al., 2024) 99.76 0.33
WSO-IC 99.96 0.398

Optimal duty cycle calculated for each scenario

Scenario Pmpp (W) D_opt
Scenario 1 Pmpp = 426.3 D_opt_G = 0.71721425
Scenario 2 Pmpp_G = 207.4 D_opt_G = 0.80383836
Pmpp_L = 189.5 D_opt_L = 0.54699656
Scenario 3 Pmpp_G = 187.6 D_opt_G = 0.55062217
Pmpp_L = 167.3 D_opt_L = 0.77950357
Scenario 4 Pmpp_G = 184.6 D_opt_G = 0.55110705
Pmpp_L = 126.1 D_opt_L = 0.74620251

Electrical specifications of the PV panels_

Pmax Voc Isc Vmp Imp
PV module 213.15 W 36.3 V 7.84 A 29 V 7.35 A
PV installation 426.3 W 72.6 V 7.84 A 58 V 7.35 A
Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Informatica, Intelligenza artificiale, Ingegneria, Elettrotecnica, Elettronica