Accesso libero

Constrained Series PI, PID and PIDA Controller Design Inspired by Ziegler–Nichols

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Agwa, A., Elsayed, S. and Ahmed, M. (2021). Design of Optimal Controllers for Automatic Voltage Regulation Using Archimedes Optimizer. Intelligent Automation and Soft Computing, 31, pp. 799–815. doi: 10.32604/iasc.2022.019887. Search in Google Scholar

Alfaro, V. M. and Vilanova, R. (2013). Robust Tuning of 2DoF Five-Parameter PID Controllers for Inverse Response Controlled Processes. Journal of Process Control, 23, pp. 453–462. doi: 10.1016/j. jprocont.2013.01.005. Search in Google Scholar

Arulvadivu, J., Manoharan, S., Lal Raja Singh, R. and Giriprasad, S. (2022). Optimal Design of Proportional Integral Derivative Acceleration Controller for Higher-order Nonlinear Time Delay System using m-MBOA Technique. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35. doi: 10.1002/jnm.3016. Search in Google Scholar

Astrom, K. J., Panagopoulos, H. and Hagglund, T. (1998). Design of PI Controllers based on Non-Convex Optimization. Automatica, 34, pp. 585–601. doi: 10.1016/S0005-1098(98)00011-9. Search in Google Scholar

Astrom, K. J. and Hagglund, T. (1995). PID Controllers: Theory, Design, and Tuning, 2nd ed. NC: Instrument Society of America, Research Triangle Park. Search in Google Scholar

Åström, K. J. and Hägglund, T. (2004). Revisiting the Ziegler-Nichols Step Response Method for PID Control. Journal of Process Control, 14, pp. 635–650. doi: 10.1016/j.jprocont.2004.01.002. Search in Google Scholar

Astrom, K. J. and Hagglund, T. (2006). Advanced PID Control. NC: ISA, Research Triangle Park. Search in Google Scholar

Bansal, S. (2021). Nature-Inspired Hybrid Multi-objective Optimization Algorithms in Search of Near-OGRs to Eliminate FWM Noise Signals in Optical WDM Systems and their Performance Comparison. Journal of the Institution of Engineers (India) Series B, 102. doi: 10.1007/s40031-021-00587-5. Search in Google Scholar

Bistak, P., Huba, M., Chamraz, S. and Vrancic, D. (2023). IPDT Model-Based Ziegler-Nichols Tuning Generalized to Controllers with Higher-order Derivatives. Sensors, 23, p. 3787. doi: 10.3390/s23083787. Search in Google Scholar

Bistak, P., Huba, M. and Vrancic, D. (2024). Practice-Oriented Controller Design for an Inverse-Response Process: Heuristic Optimization Versus Model-Based Approach. Applied Sciences, 14, p. 2890. doi: 10.3390/app14072890. Search in Google Scholar

Borase, R., Maghade, D. K., Sondkar, S. Y. and Pawar, S. (2021). A Review of PID Control, Tuning Methods and Applications. International Journal of Dynamics and Control, 9, pp. 818–827. doi: 10.1007/s40435-020-00665-4. Search in Google Scholar

Boskovic, M. C., Sekara, T. B. and Rapaic, M. R. (2020). Novel Tuning Rules for PIDC and PID Load Frequency Controllers Considering Robustness and Sensitivity to Measurement Noise. International Journal of Electrical Power and Energy Systems, 114, p. 105416. doi: 10.1016/j.ijepes.2019.105416. Search in Google Scholar

Briežnik, J., Zakova, K. and Huba, M. (2023). Filament dryer for FDM 3D printing. In: Proceedings of the 2023 International Conference on Electrical Drives and Power Electronics (EDPE), pp. 1–7. doi: 10.1109/EDPE58625.2023.10274024. Search in Google Scholar

Buriakovskyi, S., Asmolova, L. V., Maslii, A. S., Maslii, A. S. and Obruch, I. (2022). Development and Study of a Microprocessor Automatic Control System for a Mono-Switch Tie Type with a Linear Inductive Electric Motor and a Discrete Speed Controller. Electrical Engineering and Electromechanics, pp. 3–9. doi: 10.20998/2074-272X.2022.5.01. Search in Google Scholar

Calasan, M., Micev, M., Radulovic, M., Zobaa, A. F., Hasanien, H. M. and Abdel Aleem, S. H. E. (2021). Optimal PID Controllers for AVR System Considering Excitation Voltage Limitations Using Hybrid Equilibrium Optimizer. Machines, 9, p. 265. doi: 10.3390/machines9110265. Search in Google Scholar

Emiroglu, S. and Gumus, T. (2022). Optimal Control of Automatic Voltage Regulator System with Coronavirus Herd Immunity Optimizer Algorithm-Based PID plus Second Order Derivative Controller. Academic Platform Journal of Engineering and Smart Systems, 10, pp. 174–183. doi: 10.21541/apjess.1149455. Search in Google Scholar

Fawwaz, M. A., Bingi, K., Ibrahim, R., Devan, P. A. M. and Prusty, B. R. (2023). Design of PIDDα Controller for Robust Performance of Process Plants. Algorithms, 16, p. 437. doi: 10.3390/a16090437. Search in Google Scholar

Ferrari, M. and Visioli, A. (2022). A Software Tool to Understand the Design of PIDA Controllers. IFAC-PapersOnLine, 55, pp. 249–254. 13th IFAC Symposium on Advances in Control Education ACE 2022. doi: 10.1016/j.ifacol.2022.09.287. Search in Google Scholar

Follinger, O. (1993). Nichtlineare Regelungen. Munchen: R. Oldenbourg Verlag. Search in Google Scholar

Glattfelder, A. and Schaufelberger, W. (2003). Control Systems with Input and Output Constraints. Berlin: Springer. Search in Google Scholar

Haddad, W. M. and Chellaboina, V. (2011). Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach. Princeton University Press. Search in Google Scholar

Hägglund, T. and Åström, K. J. (2002). Revisiting the Ziegler-Nichols Tuning Rules for PI Control. Asian Journal of Control, 4(4), pp. 364–380. doi: 10.1111/j.1934-6093.2002.tb00076.x. Search in Google Scholar

Hanus, R., Kinnaert, M. and Henrotte, J. (1987). Conditioning Technique, a General Anti-Windup and Bumpless Transfer Method. Automatica, 23, pp. 729–739. doi: 10.1016/0005-1098(87)90029-X. Search in Google Scholar

Huba, M., Bistak, P. and Vrancic, D. (2023a). Series PID Control with Higher-order Derivatives for Processes Approximated by IPDT Models. IEEE Transactions on Automation Science and Engineering, pp. 1–13. doi: 10.1109/TASE.2023.3296201. Search in Google Scholar

Huba, M., Bistak, P. and Vrancic, D. (2023b). Parametrization and Optimal Tuning of Constrained Series PIDA Controller for IPDT Models. Mathematics, 11(20), p. 4229. doi: 10.3390/math11204229. Search in Google Scholar

Huba, M., Bistak, P. and Vrancic, D. (2023c). Series PIDA Controller Design for IPDT Processes. Applied Sciences, 13, p. 2040. doi: 10.3390/app13042040. Search in Google Scholar

Huba, M., Chamraz, S., Bistak, P. and Vrancic, D. (2021a). Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. Sensors, 18, p. 6157. doi: 10.3390/s21186157. Search in Google Scholar

Huba, M., Vrancic, D. and Bistak, P. (2021b). PID Control with Higher Order Derivative Degrees for IPDT Plant Models. IEEE Access, 9, pp. 2478–2495. doi: 10.1109/ACCESS.2020.3047351. Search in Google Scholar

Jung, S. and Dorf, R. C. (1996a). Novel Analytic Technique for PID and PIDA Controller Design. IFAC Proceedings Volumes, 29, pp. 1146–1151. 13th World Congress of IFAC, 1996, San Francisco USA, 30 June–5 July. doi: 10.1016/S1474-6670(17)57819-2. Search in Google Scholar

Jung, S. and Dorf, R. C. (1996b). Analytic PIDA controller design technique for a third order system. In: Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 3, pp. 2513–2518 vol. 3. Search in Google Scholar

Khalil, H. (1996). Nonlinear Systems, 2nd ed. London: Prentice Hall. Search in Google Scholar

Kothare, M. V., Campo, P. J., Morari, M. and Nett, C. V. (1994). A Unified Framework for the Study of Anti-windup Designs. Automatica, 30, pp. 1869–1883. doi: 10.1016/0005-1098(94)90048-5. Search in Google Scholar

Kumar, M., Hote, Y. V. and Sikander, A. (2023). A novel cascaded CDM-IMC based PIDA controller design and its application. In: Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), 11–12 March 2023, Male, Maldives: IEEE, pp. 1–7. doi: 10.1109/GlobConHT56829.2023.10087714. Search in Google Scholar

Kumar, M. and Hote, Y. V. (2021a). Robust PIDD2 Controller Design for Perturbed Load Frequency Control of an Interconnected Time-Delayed Power Systems. IEEE Transactions on Control Systems Technology, 29, pp. 2662–2669. doi: 10.1109/TCST.2020.3043447. Search in Google Scholar

Kumar, M. and Hote, Y. V. (2021b). Real-Time Performance Analysis of PIDD2 Controller for Nonlinear Twin Rotor TITO Aerodynamical System. Journal of Intelligent and Robotic Systems: Theory and Applications, 101. doi: 10.1007/s10846-021-01322-4. Search in Google Scholar

Kumar, M. and Hote, Y. V. (2021c). PIDD2 controller design based on internal model control approach for a non-ideal DC-DC boost converter. In: Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), 02–05 February 2021, College Station, TX, USA: IEEE. doi: 10.1109/TPEC51183.2021.9384954. Search in Google Scholar

Lima, T. A. (2021). Contributions to the Control of Input-Saturated Systems: Time Delay and allocation Function Cases. Fortaleza: Universidade Federal Do Ceara. Search in Google Scholar

Micev, M., Ćalasan, M. and Radulović, M. (2021). Optimal design of real PID plus second-order derivative controller for AVR system. In: Proceedings of the 2021 25th International Conference on Information Technology (IT), 16–20 February 2021, Zabljak, Montenegro: IEEE, pp. 1–4. doi: 10.1109/IT51528.2021.9390145. Search in Google Scholar

Oladipo, S., Sun, Y. and Wang, Z. (2021). An effective hFPAPFA for a PIDA-based hybrid loop of Load Frequency and terminal voltage regulation system. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, 23–27 August 2021, Nairobi, Kenya: IEEE, pp. 1–5. doi: 10.1109/PowerAfrica52236.2021.9543348. Search in Google Scholar

Oldenbourg, R. and Sartorius, H. (1944). Dynamik selbsttatiger Regelungen. Munchen: R.Oldenbourg-Verlag. Search in Google Scholar

Popov, V. (1961). On the Absolute Stability of Nonlinear Control Systems. Avtom. i telemekhanika, 22(8), pp. 961–979. Search in Google Scholar

Sahib, M. A. (2015). A Novel Optimal PID Plus Second Order Derivative Controller for AVR System. Engineering Science and Technology, an International Journal, 18, pp. 194–206. doi: 10.1016/j.jestch.2014.11.006. Search in Google Scholar

Saxena, S. and Biradar, S. (2022). Fractional-order IMC Controller for High-Order System using Reduced-Order Modelling via Big-Bang, Big-Crunch Optimisation. International Journal of Systems Science, 53, pp. 168–181. doi: 10.1080/00207721.2021.1942587. Search in Google Scholar

Takahashi, Y., Chan, C. and Auslander, D. (1971). Parametereinstellung bei linearen DDCAlgorithmen. Regelungstechnik, 19, pp. 237–244. Search in Google Scholar

Tepljakov, A., Alagoz, B. B., Yeroglu, C., Gonzalez, E., HosseinNia, S. H. and Petlenkov, E. (2018). FOPID Controllers and Their Industrial Applications: A Survey of Recent Results. IFAC-PapersOnLine, 51, pp. 25–30. 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2018. doi: 10.1016/j.ifacol.2018.06.014. Search in Google Scholar

Thomson, D. and Padula, F. (2022). Introduction to Fractional-Order Control: A Practical Laboratory Approach. IFAC-PapersOnLine, 55, pp. 126–131. 13th IFAC Symposium on Advances in Control Education ACE 2022. doi: 10.1016/j. ifacol.2022.09.268. Search in Google Scholar

Ukakimaparn, P., Pannil, P., Boonchuay, P. and Trisuwannawat, T. (2009). PIDA controller designed by Kitti’s method. In Proceedings of the 2009 ICCAS-SICE, 18–21 August 2009, Fukuoka, Japan: IEEE, pp. 1547–1550. Search in Google Scholar

Veinovic, S., Stojic, D. and Ivanovic, L. (2023). Optimized PIDD2 Controller for AVR Systems Regarding Robustness. International Journal of Electrical Power and Energy Systems, 145, p. 108646. doi: 10.1016/j.ijepes.2022.108646. Search in Google Scholar

Visioli, A. and Sánchez-Moreno, J. (2022). A Relay-Feedback Automatic Tuning Methodology of PIDA Controllers for High-Order Processes. International Journal of Control, 0, pp. 1–8. Search in Google Scholar

Viteckova, M. and Vitecek, A. (2016). 2DOF PID controller tuning for integrating plants. In: 2016 17th International Carpathian Control Conference (ICCC), 29 May 2016–01 June 2016, High Tatras, Slovakia: IEEE, pp. 793–797. doi: 10.1109/CarpathianCC.2016.7501204. Search in Google Scholar

Zandavi, S. M., Chung, V. and Anaissi, A. (2022). Accelerated Control Using Stochastic Dual Simplex Algorithm and Genetic Filter for Drone Application. IEEE Transactions on Aerospace and Electronic Systems, 58, pp. 2180–2191. doi: 10.1109/TAES.2021.3134751. Search in Google Scholar

Ziegler, J. G. and Nichols, N. B. (1942). Optimum Settings for Automatic Controllers. Transactions of the ASME, 64, pp. 759–768. Search in Google Scholar

eISSN:
2543-4292
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics