INFORMAZIONI SU QUESTO ARTICOLO

Cita

Bierhoff, M. H. and Fuchs, F. W. (2009). Active Damping for Three-Phase PWM Rectifiers with High-Order Line-Side Filters. IEEE Transactions on Industrial Electronics, 56(2), pp. 371–379. https://doi.org/10.1109/TIE.2008.2007950.10.1109/TIE.2008.2007950 Search in Google Scholar

Bohn, G. and Steinmetz, G. (1984). The Electromagnetic Levitation and Guidance Technology of the ‘Transrapid’ Test Facility Emsland. IEEE Transactions on Magnetics, 20(5), pp. 1666–1671. https://doi.org/10.1109/TMAG.1984.1063246.10.1109/TMAG.1984.1063246 Search in Google Scholar

Cervera, A., Ezra, O., Kuperman, A. and Peretz, M. M. (2019). Modeling and Control of Magnetic Actuation Systems Based on Sensorless Displacement Information. IEEE Transactions on Industrial Electronics, 66(6), pp. 4849–4859. https://doi.org/10.1109/TIE.2018.2847652.10.1109/TIE.2018.2847652 Search in Google Scholar

Cho, H.-W., Yu, J.-S., Jang, S.-M., Kim, C.-H., Lee, J.-M. and Han, H.-S. (2012). Equivalent Magnetic Circuit Based Levitation Force Computation of Controlled Permanent Magnet Levitation System. IEEE Transactions on Magnetics 48(11), pp. 4038–4041. https://doi.org/10.1109/TMAG.2012.2198800.10.1109/TMAG.2012.2198800 Search in Google Scholar

He, J. L., Rote, D. M. and Coffey, H. T. (1994). Study of Japanese Electrodynamic-Suspension Maglev Systems. Argonne National Lab., IL (United States). Energy Systems Division ANL/ESD-20. https://doi.org/10.2172/10150166.10.2172/10150166 Search in Google Scholar

Henzel, M. and Mazurek, P. (2011). The analysis of the control system of the active magnetic bearing. In: Z. T. Bronislaw, ed., Electrodynamic and Mechatronic Systems (SCE III). Opole, Poland, 6–8 October 2011, In: 2011 IEEE 3rd International Students Conference on Electrodynamics and Mechatronics (SCE III), Opole, Poland, 10 June 2011 – 10 August 2011, IEEE: Piscataway, NJ, pp. 53–58.10.1109/SCE.2011.6092124 Search in Google Scholar

Kim, C.-H., Cho, H.-W., Lee, J.-M., Han, H.-S., Kim, B.-S., Kim, D.-S. (2010). Zero-power control of magnetic levitation vehicles with permanent magnets. In: 2010 International Conference on Control Automation and Systems (ICCAS 2010), Gyeonggido, 27 October 2010 – 30 October 2010, IEEE, pp. 732–735.10.1109/ICCAS.2010.5670118 Search in Google Scholar

Kim, K.-J., Han, H.-S., Kim, C.-H. and Yang, S.-J. (2013). Dynamic Analysis of a Maglev Conveyor Using an EM-PM Hybrid Magnet. Journal of Electrical Engineering and Technology, 8(6), pp. 1571–1578.10.5370/JEET.2013.8.6.1571 Search in Google Scholar

Kim, Y. H., Kim, K. M. and Lee, J. (2001). Zero Power Control with Load Observer in Controlled-PM Levitation. IEEE Transactions on Magnetics, 37(4), 2851–2854. https://doi.org/10.1109/20.951326.10.1109/20.951326 Search in Google Scholar

Lin, C. E. and Lin, K. G. (2000). Implementation and control of the magnetic linear actuation system. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, IMTC 2000, Baltimore, MD, USA, 1–4 May 2000, IEEE, pp. 1384–1387.10.1109/IMTC.2000.848702 Search in Google Scholar

Papadopoulos, K. (2015). PID Controller Tuning Using the Magnitude Optimum Criterion. Cham: Springer International Publishing.10.1007/978-3-319-07263-0 Search in Google Scholar

Rickwartz, J. P., Kolb, J. and Hameyer, K. (2020). Control, simulation and validation of a hybrid actuator for a Maglev train model on a scale of 1:20. In: 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 12 September 2020 – 12 November 2020, IEEE, pp. 1–6.10.1109/REM49740.2020.9313869 Search in Google Scholar

Shin, H.-J., Choi, J.-Y., Jung, K.-H., Lee, J.-M. and Kim, C.-H. (2016). Influence of Lateral-Impact Force on Electropermanent Magnet Suspension Conveyor with Inherent Guidance Force. IEEE Transactions on Magnetics, 52(7), pp. 1–4. https://doi.org/10.1109/TMAG.2016.2514298.10.1109/TMAG.2016.2514298 Search in Google Scholar

Zhang, C., Nguyen, T. D., Tseng, K. J. and Zhang, S. (2010). Stiffness analysis and levitation force control of the active magnetic bearing for a partially-self-bearing flywheel system. In: 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET 2010), Kandy, Sri Lanka, 6–9 December 2010, Kandy, Sri Lanka, 12 June 2010 – 12 September 2010, Piscataway, NJ: IEEE, pp. 1–6.10.1109/ICSET.2010.5684432 Search in Google Scholar

Zhao, C., Sun, F., Jin, J., Tang, H. J. and Xu, F., Li, Q. and Oka, K. (2020). Analysis of Quasi-Zero Power Characteristic for a Permanent Magnetic Levitation System with a Variable Flux Path Control Mechanism. IEEE/ASME Transactions on Mechatronics, 1. https://doi.org/10.1109/TMECH.2020.3026086.10.1109/TMECH.2020.3026086 Search in Google Scholar

eISSN:
2543-4292
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics