Accesso libero

Therapeutic importance, general and endocrine adverse effects of immune checkpoint inhibitors I: mechanism of action and therapeutic use

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nature Reviews Drug Discovery [Internet]. Springer US; 2019;18:99–115. Search in Google Scholar

Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nature Reviews Drug Discovery [Internet]. Springer US; 2020;19:39–56. Search in Google Scholar

Fésüs V. Az immunonkológia újdonságai a szolid tumorok és a hematológiai daganatok kezelésében – az immunel-lenőrzőpont-gátlók. Magyar Onkológia. 2017;61:116–25. Search in Google Scholar

Prendergast GC, Smith C, Thomas S, Mandiknayak L, Metz R, Muller AJ. Inflammation and Immune Escape in Cancer. Cancer Immunology, Immunotherapy. 2014;63:721–35. Search in Google Scholar

https://www.nobelprize.org/prizes/medicine/2018/press-release. Search in Google Scholar

The Nobel Assembly at Karolinska Institutet. The Nobel Assembly at Karolinska Institutet has today decided to award the 2018 Nobel Prize in Physiology or Medicine jointly to James P. Allison and Tasuku Honjo. 2018;1–5. Available from: https://www.nobelprize.org/prizes/medicine/2018/summary/ Search in Google Scholar

Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D. Immunotherapy in melanoma: Recent advances and future directions. European Journal of Surgical Oncology [Internet]. Elsevier Ltd; 2017;43:604–11. Search in Google Scholar

8. Imbimbo M, Russo G Lo, Blackhall F. Current status of immunotherapy for non-small-cell lung cancer. Tumori. 2016; 102:337–51. Search in Google Scholar

Zhang W, Kong X, Ai B, Wang Z, Wang X, Wang N, et al. Research Progresses in Immunological Checkpoint Inhibitors for Breast Cancer Immunotherapy.Front. Oncol., 23 September 2021, Vol 11 - 2021. Search in Google Scholar

Deligiannis NG, Sosa S, Danilowicz K, Rizzo LFL. Endocrine dysfunction induced by immune checkpoint inhibitors. Pharmacological mechanisms of action and pathophysiology. Medicina (Buenos Aires). 2021;81:269–78. Search in Google Scholar

Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, et al. Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology [Internet]. Nature Publishing Group; 2011;11:693–702. Search in Google Scholar

Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013;39:1–10. Search in Google Scholar

Kiss E. Immunológia újabb lehetőségei az onkológiai terápiában. Central European Journal of Gastroenterology and Hepatology. 2019;5:68–73. Search in Google Scholar

Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clinical Cancer Research. 2014;20:2424–32. Search in Google Scholar

Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ, Sharpe H. PD-L1 interacts specifically with B7-1 to inhibit T cell proliferation. Immunity [Internet]. 2009;27:111–22. Search in Google Scholar

Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. Journal of Experimental Medicine. 2000;192:303–9. Search in Google Scholar

Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3. Search in Google Scholar

Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer immunology research. 2014;2:846–56. Search in Google Scholar

Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Anti-PD-L1/PD-1 immune therapies in ovarian cancer: basic mechanism and future clinical application. International Journal of Clinical Oncology. Springer Japan; 2016;21:456–61. Search in Google Scholar

McDermott D, Haanen J, Chen TT, Lorigan P, O’Day S. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Annals of Oncology. 2013;24:2694–8. Search in Google Scholar

FDA History. Yervoy FDA Approval History. Last updated by Judith Stewart, BPharm on Jan 28, 2021.Drugs.com Search in Google Scholar

Abou-Alfa G, Chan S, Kudo M et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. Journal of Clinical Oncology 2022, 40(4_suppl):379-379. Search in Google Scholar

Durvalumab plus tremelimumab significantly improves survival for patients with advanced liver cancer compared to sorafenib. News release. ASCO. January 18, 2022. Search in Google Scholar

EMA/521637/2018.EMEA/H/C/004771. Imfinzi (durvalumab) An overview of Imfinzi and why it is authorised in the EU. ema.europa.eu/medicine/Human medicines/European public assessment reports. Search in Google Scholar

https://www.ema.europa.eu/medicines/human/EPAR/opdivo. Search in Google Scholar

Twomey JD, Zhang B. Cancer Immunotherapy Update: FDA- Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS Journal. The AAPS Journal; 2021;23. Search in Google Scholar

www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm. Search in Google Scholar

https://www.drugs.com/newdrugs/fda-approves-keytruda-pembrolizu HYPERLINK “https://www.drugs.com/new-drugs/fda-approves-keytruda-pembrolizumab-first-cancer-any-solid-tumor-specific-genetic-feature-4538.htm”mab-first-cancer-any-solid-tumor-specific-genetic-feature-4538.htm. Search in Google Scholar

https://www.cancerresearch.org/immunotherapy/timeline-of-progress. Search in Google Scholar

National Cancer Institute. Home. About Cancer. Cancer Treatment A to Z. List of Cancer Drugs. Pembrolizumab. Updated: January 27, 2022. Search in Google Scholar

EMA recommends extension of indications for pembroli- zumab. New indication concerns the treatment of PD-L1 positive locally recurrent unresectable or metastatic TNBC. ESMO. Oncology News. Date: 14 Oct 2021. Search in Google Scholar

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm622251.htm. Search in Google Scholar

Atezolizumab[Tecentriq]. Prescribinginformation. Availableat https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761034s019lbl.pdf. Accessed May 27, 2020.Google Scholar. Search in Google Scholar

EMA/234492/2021, EMEA/H/C/004143.Tecentriq – atezoli- zumab. An overview of Tecentriq and why it is authorised in the EU. Last updated in 04-2021. ema.europa.eu/medicines/human/EPAR/tecentriq. Search in Google Scholar

Tecentriq FDA Approval History. Drugs.com. Last updated by Judith Stewart, BPharm on Nov 8, 2021. Search in Google Scholar

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm557162.htm. Search in Google Scholar

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm555930.htm. Search in Google Scholar

EMA/423228/2020, EMEA/H/C/004338. Bavencio (ave- lumab). An overview of Bavencio and why it is authorised in the EU. Last updated in 08-2020.ema.europa.eu/medicines/human/EPAR/bavencio. Search in Google Scholar

Bavencio FDA Approval History.Drugs.com.Last updated by Judith Stewart, BPharm on Jan 28, 2021. Search in Google Scholar

Mathieu L, Shah S, Pai-Scherf L, Larkins E, Vallejo J, Li X, et al. FDA Approval Summary: Atezolizumab and Durvalumab in Combination with Platinum-Based Chemotherapy in Extensive Stage Small Cell Lung Cancer. Oncologist. 2021. p. 433–8. Search in Google Scholar

Durvalumab [IMFINZI]. Prescribing information. Available at https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761069s018lbl.pdf. Accessed May 27, 2020.Google Scholar. Search in Google Scholar

EMA recommends extension of indications for durvalumab. New indication concerns first-line treatment of adults with extensive-stage small cell lung cancer. ESMO. Oncology News Date: 27 Jul 2020. Search in Google Scholar

https://www.drugs.com/history/yervoy.htm. Search in Google Scholar

Lenz HJJ, Van Cutsem E, Limon ML, et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Annals of oncology 29, viii714. Search in Google Scholar

Overman MJ, Lonardi S, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018; 36: 773–779. Search in Google Scholar

Imfinzi and tremelimumab granted orphan drug designation in the US for liver cancer. News release. AstraZeneca. Published January 21, 2020. Accessed January 18, 2022. Search in Google Scholar

Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunological Reviews. 2017. p. 97–111. Search in Google Scholar

Durham NM, Nirschl CJ, Jackson CM, Elias J, Kochel CM, Anders RA, et al. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PloS One (2014) 9(11):e109080. Search in Google Scholar

Ascierto PA, Melero I, Bhatia S, Bono P, Sanborn RE, Lipson EJ. Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Oncol 35, 2017 (suppl; abstr 9520). Search in Google Scholar

Graydon CG, Mohideen S, Fowke KR. LAG3’s Enigmatic Mechanism of Action. Frontiers in Immunology. 2021;11:1–7. Search in Google Scholar

Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Front. Immunol., 22 July 2021. Volume 12 - 2021 Search in Google Scholar

Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. The Lancet Oncology. Elsevier Ltd; 2017;18:e143–52. Search in Google Scholar

Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161: 205–214. Search in Google Scholar

Tímár J, Ladányi A. A daganatok immunterápiájának pre- diktív markerei, a PD-L1 meghatározás gyakorlati kérdései. Magyar Onkológia 2017; 61: 158–166. Search in Google Scholar

Lawrence MS, et al. Mutational heterogeneity in cancer and the research for new cancer genes. Nature 2013 jul 11; 4997457: 214–218. Search in Google Scholar

Naboush A, Roman CA, Shapira I. Immune checkpoint inhibitors in malignancies with mismathc repair deficiency: a review of the state of the current knowledge. J Investing Med 2017; 65: 754–758. Search in Google Scholar

Dick J, Lang N, Slynko A, et al. Use of LDH and autoimmune side effects to predict response to ipilimumab treatment. Immunotherapy 8:1033–1044, 2016. Search in Google Scholar

Kirilovsky A, Marliot F, El Sissy C, et al. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients. Int Immunol 28:373–382, 2016. Search in Google Scholar

Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128, 2015. Search in Google Scholar

Templeton AJ, McNamara MG, Seruga B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106:dju124, 2014. Search in Google Scholar

Moore EC, Clavijo PE, Davis R, et al. Established T-cell inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1-pathway blockade. Cancer Immunol Res 4:1061–1071, 2016. Search in Google Scholar

Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2:286–294, 2016. Search in Google Scholar

Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Research. 2020;30(6):507–19. Search in Google Scholar

Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med. 2018;379(22):2108–21. Search in Google Scholar

Pitt JM, Vetizou M, Daillere R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity 44:1255–1269, 2016. Search in Google Scholar

Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol 41:174–184, 2014. Search in Google Scholar

Gebhardt C, Sevko A, Jiang H, et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res 21:5453–5459, 2015. Search in Google Scholar

Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539:437–442, 2016 56. Search in Google Scholar

De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539:443–447, 2016. Search in Google Scholar

Lentsch EJ. Thyroid Cancer Treatment Protocols: Treatment Protocols. Emedicine. medscape.com. 2021. Search in Google Scholar

Dierks C, Seufert J, Aumann K, Ruf J, Klein C, Kiefer S, et al. Combination of Lenvatinib and Pembrolizumab Is an Effective Treatment Option for Anaplastic and Poorly Differentiated Thyroid Carcinoma. Thyroid. 2021;31(7):1076–85. Search in Google Scholar

Dierks C, Ruf J, Seufert J, Kreissl M, Klein C, Spitzweg C, et al. 1646MO Phase II ATLEP trial: Final results for lenvatinib/pembrolizumab in metastasized anaplastic and poorly differentiated thyroid carcinoma. Ann Oncol. 2022 Sep;33:S1295. Search in Google Scholar

Gubbi S, Vijayvergia N, Yu JQ, Klubo-Gwiezdzinska J, Koch C. Immune Checkpoint Inhibitor Therapy in Neuroendocrine Tumors. Horm Metab Res. 2022;795–812. Search in Google Scholar

Wang T-W, Johmura Y, Suzuki N, Omori S, Migita T, Yamaguchi K, et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature. 2022;611(7935):358–64. Search in Google Scholar

Makker V, Colombo N, Casado Herráez A, Santin AD, Colomba E, Miller DS, et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N Engl J Med. 2022 Jan; 386(5):437–48. Search in Google Scholar

Wahner A. Cabozantinib/Atezolizumab Elicits Durable, Tolerable Clinical Activity in Advanced HNSCC. OncLive, Nov 29, 2022. Search in Google Scholar

Rottey S, Santoro A, Arnold S, Khan S, Cohn A, Fang B, et al. Cabozantinib plus atezolizumab in advanced head and neck cancer previously treated with platinum-containing chemotherapy: Results from cohort 17 of the COSMIC-021 study. In: Journal for ImmunoTherapy of Cancer. 2022. p. A597 LP-A597. Search in Google Scholar

Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, et al. Combining immune checkpoint inhibitors: Established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol. 2019;10(MAR):1–20. Search in Google Scholar

Atkins MB, Lee SJ, Chmielowski B, Tarhini AA, Cohen GI, Truong TG, et al. Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients with Advanced BRAF -Mutant Melanoma: The DREAMseq Trial - ECOG-ACRIN EA6134. J Clin Oncol. 2023;41(2):186–97. Search in Google Scholar

Bentebibel S-E, Johnson D, Amariae R, et al. Intratumoral CD40 agonist sotigalimab with pembrolizumab induces broad innate and adaptive immune activation in local and distant tumors in metastatic melanoma. Presented at: American Association for Cancer Research Annual Meeting; April 8-13, 2022; New Orleans, LA. Abstract CT039. Search in Google Scholar

eISSN:
2537-5059
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy