INFORMAZIONI SU QUESTO ARTICOLO

Cita

Garkusha, I. E., Makhlai, V. A., Petrov, Yu. V., Herashchenko, S. S., Ladygina, M. S., Aksenov, N. N., Byrka, O. V., Chebotarev, V. V., Kulik, N. V., Staltsov, V. V., & Pestchanyi, S. (2021). Vapour shielding of liquid-metal CPS-based targets under ELM-like and disruption transient loading. Nucl. Fusion, 61, 116040. DOI: 10.1088/1741-4326/ac26ec. Garkusha, I. E., Makhlai, V. A., Petrov, Yu. V., Herashchenko, S. S., Ladygina, M. S., Aksenov, N. N., Byrka, O. V., Chebotarev, V. V., Kulik, N. V., Staltsov, V. V., & Pestchanyi, S. (2021). Vapour shielding of liquid-metal CPS-based targets under ELM-like and disruption transient loading. Nucl. Fusion, 61, 116040. DOI: 10.1088/1741-4326/ac26ec.Open DOISearch in Google Scholar

Zdunek, K. (1995). Spreading of impulse plasma within a coaxial accelerator. Surf. Coat. Technol., 74/75, 949–952. DOI: 10.1016/0257-8972(95)80038-7. Zdunek, K. (1995). Spreading of impulse plasma within a coaxial accelerator. Surf. Coat. Technol., 74/75, 949952. DOI: 10.1016/0257-8972(95)80038-7.Open DOISearch in Google Scholar

Zdunek, K., & Karwat, T. (1996). Distribution of magnetic field in the coaxial accelerator of impulse plasma. Vacuum, 47(11), 1391–1394. DOI: 10.1016/S0042-207X(96)00180-7. Zdunek, K., & Karwat, T. (1996). Distribution of magnetic field in the coaxial accelerator of impulse plasma. Vacuum, 47(11), 13911394. DOI: 10.1016/S0042-207X(96)00180-7.Open DOISearch in Google Scholar

Garkusha, I. E., Cherednychenko, T. N., Ladygina, M. S., Makhlay, V. V., Petrov, Yu. V., Solyakov, D. G., Staltsov, V. V., Yelisyeyev, D. V., & Hassanein, A. (2014). EUV radiation from pinching discharges of magnetoplasma compressor type and its dependence on the dynamics of compression zone formation. Phys. Scr. T, 161, 014037. DOI: 10.1088/0031-8949/2014/T161/014037. Garkusha, I. E., Cherednychenko, T. N., Ladygina, M. S., Makhlay, V. V., Petrov, Yu. V., Solyakov, D. G., Staltsov, V. V., Yelisyeyev, D. V., & Hassanein, A. (2014). EUV radiation from pinching discharges of magnetoplasma compressor type and its dependence on the dynamics of compression zone formation. Phys. Scr. T, 161, 014037. DOI: 10.1088/0031-8949/2014/T161/014037.Open DOISearch in Google Scholar

Solyakov, D. G., Petrov, Y. V., Garkusha, I. E., Chebotarev, V. V., Ladygina, M. S., Cherednichenko, T. N., Morgal’, Ya. I., Kulik, N. V., Staltsov, V. V., & Eliseev, D. V. (2013). Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep., 39, 986–992. DOI: 10.1134/S1063780X13110081. Solyakov, D. G., Petrov, Y. V., Garkusha, I. E., Chebotarev, V. V., Ladygina, M. S., Cherednichenko, T. N., Morgal’, Ya. I., Kulik, N. V., Staltsov, V. V., & Eliseev, D. V. (2013). Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep., 39, 986992. DOI: 10.1134/S1063780X13110081.Open DOISearch in Google Scholar

Bandura, A. N., Byrka, O. V., Garkusha, I. E., Ladygina, M. S., Marchenko A. K., Makhlay, V. A., & Tereshin, V. I. (2011). Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor. Probl. Atom. Sci. Techn., 1(17), 68–70. Bandura, A. N., Byrka, O. V., Garkusha, I. E., Ladygina, M. S., Marchenko A. K., Makhlay, V. A., & Tereshin, V. I. (2011). Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor. Probl. Atom. Sci. Techn., 1(17), 6870.Search in Google Scholar

Cherednychenko, T. N., Garkusha, I. E., Chebotarev, V. V., Solyakov, D. G., Petrov, Yu. V., Ladygina, M. S., Eliseev, D. V., & Chuvilo, A. A. (2013). Local magnetohydrodynamic characteristics of the plasma stream generated by MPC. Acta Polytech., 53(2), 131–133. DOI: 10.14311/1733. Cherednychenko, T. N., Garkusha, I. E., Chebotarev, V. V., Solyakov, D. G., Petrov, Yu. V., Ladygina, M. S., Eliseev, D. V., & Chuvilo, A. A. (2013). Local magnetohydrodynamic characteristics of the plasma stream generated by MPC. Acta Polytech., 53(2), 131133. DOI: 10.14311/1733.Open DOISearch in Google Scholar

Ladygina, M. S., Marchenko, A. K., Solyakov, D. G., Petrov, Yu. V., Makhlaj, V. A., Yeliseyev, D. V., Garkusha, I. E., & Cherednichenko, T. N. (2016). Dynamics of self-compressed argon and helium plasma streams in the MPC facility. Phys. Scr., 91(7), 074006. DOI: 10.1088/0031-8949/91/7/074006. Ladygina, M. S., Marchenko, A. K., Solyakov, D. G., Petrov, Yu. V., Makhlaj, V. A., Yeliseyev, D. V., Garkusha, I. E., & Cherednichenko, T. N. (2016). Dynamics of self-compressed argon and helium plasma streams in the MPC facility. Phys. Scr., 91(7), 074006. DOI: 10.1088/0031-8949/91/7/074006.Open DOISearch in Google Scholar

Astashynski, V. M., Bakanovich, G. I., Kuz’mitskii, A. M., & Min’ko, L. Ya. (1992). Choice of operating conditions and plasma parameters of a magnetoplasma compressor. J. Eng. Phys. Thermophys., 62(3), 386–390. DOI: 10.1007/BF00851755. Astashynski, V. M., Bakanovich, G. I., Kuz’mitskii, A. M., & Min’ko, L. Ya. (1992). Choice of operating conditions and plasma parameters of a magnetoplasma compressor. J. Eng. Phys. Thermophys., 62(3), 386390. DOI: 10.1007/BF00851755.Open DOISearch in Google Scholar

Giovannini, A. Z., Barendregt, I., Haslinde, T., Hubbs, C., & Abhari, R. S. (2015). Self-confined plasma in a magneto-plasma compressor and the influence of an externally imposed magnetic field. Plasma Sources Sci. Technol., 24, 025007. DOI: 10.1088/0963-0252/24/2/025007. Giovannini, A. Z., Barendregt, I., Haslinde, T., Hubbs, C., & Abhari, R. S. (2015). Self-confined plasma in a magneto-plasma compressor and the influence of an externally imposed magnetic field. Plasma Sources Sci. Technol., 24, 025007. DOI: 10.1088/0963-0252/24/2/025007.Open DOISearch in Google Scholar

Solyakov, D. G., Volkova, Yu. Ye., Ladygina, M. S., Merenkova, T. M., Marchenko, A. K., Garkusha, I. E., Petrov, Yu. V., Chebotarev, V. V., Makhlai, V. A., Kulik, M. V., Staltsov, V. V., & Yeliseyev, D. V. (2021). Distributions of magnetic field and current in pinching plasma flows: axial magnetic field effect. Eur. Phys. J. Plus, 136, 566. DOI: 10.1140/epjp/s13360-021-01170-z. Solyakov, D. G., Volkova, Yu. Ye., Ladygina, M. S., Merenkova, T. M., Marchenko, A. K., Garkusha, I. E., Petrov, Yu. V., Chebotarev, V. V., Makhlai, V. A., Kulik, M. V., Staltsov, V. V., & Yeliseyev, D. V. (2021). Distributions of magnetic field and current in pinching plasma flows: axial magnetic field effect. Eur. Phys. J. Plus, 136, 566. DOI: 10.1140/epjp/s13360-021-01170-z.Open DOISearch in Google Scholar

Solyakov, D. G., Volkova, Yu. Ye., Garkusha, I. E., Marchenko, A. K., Ladygina, M. S., Staltsov, V. V., Petrov, Yu. V., Chebotarev, V. V., Merenkova, T. M., Lakhlai, V. A., & Yeliseyev, D. V. (2021). Measurement of the local electron temperature in self-compressed plasma stream. Probl. Atom. Sci. Techn., 4(134), 149–153. DOI: 10.46813/2021-134-149. Solyakov, D. G., Volkova, Yu. Ye., Garkusha, I. E., Marchenko, A. K., Ladygina, M. S., Staltsov, V. V., Petrov, Yu. V., Chebotarev, V. V., Merenkova, T. M., Lakhlai, V. A., & Yeliseyev, D. V. (2021). Measurement of the local electron temperature in self-compressed plasma stream. Probl. Atom. Sci. Techn., 4(134), 149153. DOI: 10.46813/2021-134-149.Open DOISearch in Google Scholar

Baksht, F. G., & Rybakov, A. B. (1997). A theory of probes in high-pressure strongly-ionized plasmas. Tech. Phys., 42, 1385–1389. DOI: 10.1134/1.1258882. Baksht, F. G., & Rybakov, A. B. (1997). A theory of probes in high-pressure strongly-ionized plasmas. Tech. Phys., 42, 13851389. DOI: 10.1134/1.1258882.Open DOISearch in Google Scholar

Zhovtyansky, V. A., & Kolesnikova, E. P. (2013). The study of the near-wall layer in the dense plasma. Probl. Atom. Sci. Techn., 1(83), 240–242. Zhovtyansky, V. A., & Kolesnikova, E. P. (2013). The study of the near-wall layer in the dense plasma. Probl. Atom. Sci. Techn., 1(83), 240242.Search in Google Scholar

Zhovtyansky, V. A., Kolesnikova, E. P., Lelyukh, Y. I., & Goncharuk, Y. A. (2012). Peculiarities of heat and mass transfer processes in the near-wall region of dense plasma: Studies based on the use of electric probes. Energy Technologies and Resource Saving, 6, 4–16. (in Russian). Zhovtyansky, V. A., Kolesnikova, E. P., Lelyukh, Y. I., & Goncharuk, Y. A. (2012). Peculiarities of heat and mass transfer processes in the near-wall region of dense plasma: Studies based on the use of electric probes. Energy Technologies and Resource Saving, 6, 416. (in Russian).Search in Google Scholar

Demidov, V. I., Ratynskaia, S. V., & Rypdal, K. (2002). Electric probes for plasmas: The link between theory and instrument. Rev. Sci. Instrum., 73(10), 3409–3439. DOI: 10.1063/1.1505099. Demidov, V. I., Ratynskaia, S. V., & Rypdal, K. (2002). Electric probes for plasmas: The link between theory and instrument. Rev. Sci. Instrum., 73(10), 34093439. DOI: 10.1063/1.1505099.Open DOISearch in Google Scholar

Popov, T. S. V. K., Dimitrova, M., Pedrosa, M. A., López-Bruna, D., Horacek, J., Kovačič, J., Dejarnac, R., Stöckel, J., Aftanas, M., Böhm, P., Bílkova, P., Hidalgo, C., & Panek, R. (2015). Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma. Plasma Phys. Control. Fusion, 57(11), 115011. DOI: 10.1088/0741-3335/57/11/115011. Popov, T. S. V. K., Dimitrova, M., Pedrosa, M. A., López-Bruna, D., Horacek, J., Kovačič, J., Dejarnac, R., Stöckel, J., Aftanas, M., Böhm, P., Bílkova, P., Hidalgo, C., & Panek, R. (2015). Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma. Plasma Phys. Control. Fusion, 57(11), 115011. DOI: 10.1088/0741-3335/57/11/115011.Open DOISearch in Google Scholar

eISSN:
1508-5791
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other