INFORMAZIONI SU QUESTO ARTICOLO

Cita

Mohd Yunos, M. A. S., Hussain, S. A., Mohamed Yusoff, H., & Abddullah, J. (2016). Industrial radiotracer technology for process optimizations in chemical industries – A review. Pertamika J. Scholarly Res. Rev., 2(3), 20–46. https://core.ac.uk/download/pdf/234560224.pdf. Mohd YunosM. A. S. HussainS. A. Mohamed YusoffH. AbddullahJ. 2016 Industrial radiotracer technology for process optimizations in chemical industries – A review Pertamika J. Scholarly Res. Rev. 2 3 20 46 https://core.ac.uk/download/pdf/234560224.pdf. Search in Google Scholar

Othman, N., & Kamarudin, S. K. (2014). Radiotracer technology in mixing processes for industrial applications. Sci. World J., 2014, 1–15. DOI: 10.1155/2014/768604. OthmanN. KamarudinS. K. 2014 Radiotracer technology in mixing processes for industrial applications Sci. World J. 2014 1 15 10.1155/2014/768604 Open DOISearch in Google Scholar

Thyn, J., & Zitny, R. (2004). Radiotracer applications for the analysis of complex flow structure in industrial apparatuses. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 213, 339–347. DOI: 10.1016/S0168-583X(03)01648-3. ThynJ. ZitnyR. 2004 Radiotracer applications for the analysis of complex flow structure in industrial apparatuses Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 213 339 347 10.1016/S0168-583X(03)01648-3 Open DOISearch in Google Scholar

Eapenm, A. C., Raom, S. M., Agashem, S. M., Ajmera, R. L., & Yelgaonkar, V. N. (1990). Radiotracer applications in steel, petroleum and maritime industries with significant economic benefits. Isot. Environ. Health Stud., 26(9), 424–429. DOI: 10.1080/10256019008624349. EapenmA. C. RaomS. M. AgashemS. M. AjmeraR. L. YelgaonkarV. N. 1990 Radiotracer applications in steel, petroleum and maritime industries with significant economic benefits Isot. Environ. Health Stud. 26 9 424 429 10.1080/10256019008624349 Open DOISearch in Google Scholar

Mohd Yunos, M. A. S., Sipaun, S. M., & Hussain, S. A. (2019). Feasibility of using radioactive particle tracking as an alternative technique for experimental investigation in bubble column reactor. IOP Conf. Ser. Mater. Sci. Eng., 554, 012005. DOI: 10.1088/1757-899X/554/1/012005. Mohd YunosM. A. S. SipaunS. M. HussainS. A. 2019 Feasibility of using radioactive particle tracking as an alternative technique for experimental investigation in bubble column reactor IOP Conf. Ser. Mater. Sci. Eng. 554 012005 10.1088/1757-899X/554/1/012005 Open DOISearch in Google Scholar

Lin, J. S., Chen, M. M., & Chao, B. T. (1985). A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE J., 31(3), 465–473. DOI: 10.1002/aic.690310314. LinJ. S. ChenM. M. ChaoB. T. 1985 A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds AIChE J 31 3 465 473 10.1002/aic.690310314 Open DOISearch in Google Scholar

Vieira, W. S., Brandão, L. E. B., & Braz, D. (2014). An alternative method for tracking a radioactive particle inside a fluid. Appl. Radiat. Isot., 85, 139–146. DOI: 10.1016/j.apradiso.2013.12.006. VieiraW. S. BrandãoL. E. B. BrazD. 2014 An alternative method for tracking a radioactive particle inside a fluid Appl. Radiat. Isot. 85 139 146 10.1016/j.apradiso.2013.12.006 24441678 Open DOISearch in Google Scholar

International Atomic Energy Agency. (2008). Industrial process gamma tomography. Vienna: IAEA. (IAEATECDOC-1589). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1589_web.pdf. International Atomic Energy Agency 2008 Industrial process gamma tomography Vienna IAEA (IAEATECDOC-1589). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1589_web.pdf. Search in Google Scholar

Wang, M. (2015). Industrial tomography. Elsevier. https://doi.org/10.1016/C2013-0-16466-5. WangM. 2015 Industrial tomography Elsevier https://doi.org/10.1016/C2013-0-16466-5.10.1016/C2013-0-16466-5 Search in Google Scholar

Abdullah, J. (2005). Gamma-ray scanning for trouble-shooting, optimisation and predictive maintenance of distillation columns. Hydrocarbon Asia, 1/2, 62–65. https://scanningtech.com/PDF/article3.pdf. AbdullahJ. 2005 Gamma-ray scanning for trouble-shooting, optimisation and predictive maintenance of distillation columns Hydrocarbon Asia 1/2 62 65 https://scanningtech.com/PDF/article3.pdf. Search in Google Scholar

Haraguchi, M. I., Kim, H. Y., Sprenger, F. E., & Calvo, W. A. P. (2012). Industrial equipment troubleshooting with imaging technique improved gamma-ray absorption scans. J. Phys. Sci. Appl., 2(8), 359–371. HaraguchiM. I. KimH. Y. SprengerF. E. CalvoW. A. P. 2012 Industrial equipment troubleshooting with imaging technique improved gamma-ray absorption scans J. Phys. Sci. Appl. 2 8 359 371 Search in Google Scholar

Suma, T., Yelgaonkar, V. N., Tiwari, C. B., & Dhakar, V. D. (2016). Detection of interfaces and voids in pipelines using gamma scanning. IOSR J. Appl. Phys., 8(04), 12–26. DOI: 10.9790/4861-0804011226. SumaT. YelgaonkarV. N. TiwariC. B. DhakarV. D. 2016 Detection of interfaces and voids in pipelines using gamma scanning IOSR J. Appl. Phys. 8 04 12 26 10.9790/4861-0804011226 Open DOISearch in Google Scholar

Askari, M., Taheri, A., Mojtahedzadeh Larijani, M., Movafeghi, A., & Faripour, H. (2019). A gamma-ray tomography system to determine wax deposition distribution in oil pipelines. Rev. Sci. Instrum., 90(7), 075103. DOI: 10.1063/1.5095859. AskariM. TaheriA. Mojtahedzadeh LarijaniM. MovafeghiA. FaripourH. 2019 A gamma-ray tomography system to determine wax deposition distribution in oil pipelines Rev. Sci. Instrum. 90 7 075103 10.1063/1.5095859 31370454 Open DOISearch in Google Scholar

Saengchantr, D., Srisatit, S., & Chankow, N. (2019). Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel. Nucl. Eng. Technol., 51(3), 800–806. DOI: 10.1016/j.net.2018.12.022. SaengchantrD. SrisatitS. ChankowN. 2019 Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel Nucl. Eng. Technol. 51 3 800 806 10.1016/j.net.2018.12.022 Open DOISearch in Google Scholar

Zain, R. M., Yahya, R., Rahman, M. F., & Yusof, N. M. (2015). Neutron imaging system for level interface measurement. In Malaysia International NDT Conference & Exhibition 2015 (MINDTCE-15), November 2015, pp. 22–24. https://www.ndt.net/events/MINDTCE-15/app/content/Paper/26_Zain.pdf. ZainR. M. YahyaR. RahmanM. F. YusofN. M. 2015 Neutron imaging system for level interface measurement In Malaysia International NDT Conference & Exhibition 2015 (MINDTCE-15) November 2015 22 24 https://www.ndt.net/events/MINDTCE-15/app/content/Paper/26_Zain.pdf. Search in Google Scholar

Zain, R. M., Ithnin, H., Razali, A. M., Yusof, N. H. M., Mustapha, I., Yahya, R., Othman, N., & Rahman, M. F. A. (2017). Slow neutron mapping technique for level interface measurement. AIP Conf. Proc., 1799, 050004. DOI: 10.1063/1.4972938. ZainR. M. IthninH. RazaliA. M. YusofN. H. M. MustaphaI. YahyaR. OthmanN. RahmanM. F. A. 2017 Slow neutron mapping technique for level interface measurement AIP Conf. Proc 1799 050004 10.1063/1.4972938 Open DOISearch in Google Scholar

Bishnoi, S., Sarkar, P., Thomas, R., Patel, T., & Gadkari, S. (2016). Fast neutron radiography with DT neutron generator. Non-Destruct. Eval., 22, 68–73. BishnoiS. SarkarP. ThomasR. PatelT. GadkariS. 2016 Fast neutron radiography with DT neutron generator Non-Destruct. Eval. 22 68 73 Search in Google Scholar

Bishnoi, S., Thomas, R. G., Sarkar, P. S., Datar, V. M., & Sinha, A. (2015). Simulation study of fast neutron radiography using GEANT4. J. Instrum., 10(02), P02002–P02002. DOI: 10.1088/1748-0221/10/02/P02002. BishnoiS. ThomasR. G. SarkarP. S. DatarV. M. SinhaA. 2015 Simulation study of fast neutron radiography using GEANT4 J. Instrum. 10 02 P02002 P02002 10.1088/1748-0221/10/02/P02002 Open DOISearch in Google Scholar

International Atomic Energy Agency. (2008). Neutron imaging: A non-destructive tool for materials testing. Vienna: IAEA. Available from https://www-pub.iaea.org/MTCD/Publications/PDF/te_1604_web.pdf. International Atomic Energy Agency 2008 Neutron imaging: A non-destructive tool for materials testing Vienna IAEA Available from https://www-pub.iaea.org/MTCD/Publications/PDF/te_1604_web.pdf. Search in Google Scholar

Schillinger, B. (2019). An affordable image detector and a low-cost evaluation system for computed tomography using neutrons, X-rays or visible light. Quantum Beam Sci., 3(4), 21. DOI: 10.3390/qubs3040021. SchillingerB. 2019 An affordable image detector and a low-cost evaluation system for computed tomography using neutrons, X-rays or visible light Quantum Beam Sci. 3 4 21 10.3390/qubs3040021 Open DOISearch in Google Scholar

Hasan, N. M., Zain, R. M., Abdul Rahman, M. F., & Mustapha, I. (2009). The use of a neutron backscatter technique for in-situ water measurement in paper-recycling industry. Appl. Radiat. Isot., 67(7/8), 1239–1243. DOI: 10.1016/j.apradiso.2009.02.020. HasanN. M. ZainR. M. Abdul RahmanM. F. MustaphaI. 2009 The use of a neutron backscatter technique for in-situ water measurement in paper-recycling industry Appl. Radiat. Isot. 67 7/8 1239 1243 10.1016/j.apradiso.2009.02.020 19303310 Open DOISearch in Google Scholar

Bell, A. R., McRae, G., Wassenaar, R., & Wells, G. (2011). Neutron activation for planar and SPECT imaging. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011, pp. 1801–1804. DOI: 10.1109/ISBI.2011.5872756. BellA. R. McRaeG. WassenaarR. WellsG. 2011 Neutron activation for planar and SPECT imaging In IEEE International Symposium on Biomedical Imaging: From Nano to Macro March 2011 1801 1804 10.1109/ISBI.2011.5872756 Open DOISearch in Google Scholar

Kim, M. -S., Shin, H. -B., Choi, M. -G., Monzen, H., Shin, J. G., Suh, T. S., & Yoon, D. -K. (2020). Reference based simulation study of detector comparison for BNCT-SPECT imaging. Nucl. Eng. Technol., 52(1), 155–163. DOI: 10.1016/j.net.2019.07.002. KimM. -S. ShinH. -B. ChoiM. -G. MonzenH. ShinJ. G. SuhT. S. YoonD. -K. 2020 Reference based simulation study of detector comparison for BNCT-SPECT imaging Nucl. Eng. Technol. 52 1 155 163 10.1016/j.net.2019.07.002 Open DOISearch in Google Scholar

X-5 Monte Carlo Team. (2008). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. Volume I: Overview and theory. Los Alamos National Security, LLC. Available from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf. X-5 Monte Carlo Team 2008 MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. Volume I: Overview and theory Los Alamos National Security, LLC Available from https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf. Search in Google Scholar

Hart, T. (2015). Neutron backscatter versus gamma transmission analysis for coke drum applications. Thermo Scientific. Available from http://tools.thermofisher.com/content/sfs/brochures/EPMANCoker-0215.pdf. HartT. 2015 Neutron backscatter versus gamma transmission analysis for coke drum applications Thermo Scientific. Available from http://tools.thermofisher.com/content/sfs/brochures/EPMANCoker-0215.pdf. Search in Google Scholar

Licata, M., Aspinall, M. D., Bandala, M., Cave, F. D., Conway, S., Gerta, D., Parker, H. M. O., Roberts, N. J., Taylor, G. C., & Joyce, M. J. (2020). Depicting corrosion-born defects in pipelines with combined neutron/γ ray backscatter: a biomimetic approach. Sci. Rep., 10(1), 1486. DOI: 10.1038/s41598-020-58122-3. LicataM. AspinallM. D. BandalaM. CaveF. D. ConwayS. GertaD. ParkerH. M. O. RobertsN. J. TaylorG. C. JoyceM. J. 2020 Depicting corrosion-born defects in pipelines with combined neutron/γ ray backscatter: a biomimetic approach Sci. Rep. 10 1 1486 10.1038/s41598-020-58122-3 699270832001726 Open DOISearch in Google Scholar

eISSN:
1508-5791
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other