INFORMAZIONI SU QUESTO ARTICOLO

Cita

Villers, A., & Grosclaude, P. (2008). Épidémiologie du cancer de la prostate. Med. Nucl., 32(1), 2–4. DOI: 10.1016/j.mednuc.2007.11.003.VillersA.GrosclaudeP.2008Épidémiologie du cancer de la prostateMed. Nucl.3212410.1016/j.mednuc.2007.11.003Open DOISearch in Google Scholar

Global Cancer Observatory. (2019). Prostate 2018. Available from https://gco.iarc.fr/today/data/fact-sheets/cancers/27-Prostate-fact-sheet.pdf.Global Cancer Observatory2019Prostate 2018Available from https://gco.iarc.fr/today/data/fact-sheets/cancers/27-Prostate-fact-sheet.pdfSearch in Google Scholar

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 68(6), 394–424. DOI: 10.3322/caac.21492.BrayF.FerlayJ.SoerjomataramI.SiegelR. L.TorreL. A.JemalA.2018Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCA Cancer J. Clin.68639442410.3322/caac.21492Open DOISearch in Google Scholar

Davison, B. J., Gleave, M. E., Goldenberg, S. L., Degner, L. F., Hoffart, D., & Berkowitz, J. (2002). Assessing information and decision preferences of men with prostate cancer and their partners. Cancer Nurs., 25(1), 42–49.DavisonB. J.GleaveM. E.GoldenbergS. L.DegnerL. F.HoffartD.BerkowitzJ.2002Assessing information and decision preferences of men with prostate cancer and their partnersCancer Nurs.251424910.1097/00002820-200202000-00009Search in Google Scholar

Hofman, M. S., Violet, J., Hicks, R. J., Ferdinandus, J., Thang, S. P., Akhurst, T., Iravani, A., Kong, G., Kumar, A. R., Murphy, D. G., Eu, P., Jackson, P., Scalzo, M., Williams, S. G., & Sandhu, S. (2018). [177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol., 19(6), 825–833. DOI: 10.1016/S1470-2045(18)30198-0.HofmanM. S.VioletJ.HicksR. J.FerdinandusJ.ThangS. P.AkhurstT.IravaniA.KongG.KumarA. R.MurphyD. G.EuP.JacksonP.ScalzoM.WilliamsS. G.SandhuS.2018[177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 studyLancet Oncol.19682583310.1016/S1470-2045(18)30198-0Open DOISearch in Google Scholar

Li, Y., Tian, Z., Rizvi, S., Bander, N., Allen, B., & Wales, S. (2002). In vitro and preclinical targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specific membrane antigen. Prostate Cancer Prostatic Dis., 5, 36–46. DOI: 10.1038/sj/pcan/4500543.LiY.TianZ.RizviS.BanderN.AllenB.WalesS.2002In vitro and preclinical targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specific membrane antigenProstate Cancer Prostatic Dis.5364610.1038/sj/pcan/4500543Open DOISearch in Google Scholar

Azorín-Vega, E., Rojas-Calderón, E., Ferro-Flores, G., Aranda-Lara, L., Jiménez-Mancilla, N., & Nava-Cabrera, M. A. (2019). Assessment of the radiation absorbed dose produced by 177 Lu-iPSMA, 225 AciPSMA and 223 RaCl2 to prostate cancer cell nuclei in a bone microenvironment model. Appl. Radiat. Isot., 146, 66–71. DOI: 10.1016/j.apradiso.2019.01.020.Azorín-VegaE.Rojas-CalderónE.Ferro-FloresG.Aranda-LaraL.Jiménez-MancillaN.Nava-CabreraM. A.2019Assessment of the radiation absorbed dose produced by 177 Lu-iPSMA, 225 AciPSMA and 223 RaCl2 to prostate cancer cell nuclei in a bone microenvironment modelAppl. Radiat. Isot.146667110.1016/j.apradiso.2019.01.02030753987Open DOISearch in Google Scholar

Ahn, J., Park, S., Zuniga, B., Bera, A., Song, C. S., & Chatterjee, B. (2016). Vitamin D in prostate cancer. In Vitamins and hormones (Vol. 100, pp. 321–355). New York: Academic Press Inc.AhnJ.ParkS.ZunigaB.BeraA.SongC. S.ChatterjeeB.2016Vitamin D in prostate cancerInVitamins and hormones100321355New YorkAcademic Press Inc10.1016/bs.vh.2015.10.01226827958Search in Google Scholar

Ludwig, D. L., Bryan, R. A., Dawicki, W., Geoghegan, E. M., Liang, Q., Gokhale, M., Reddy, V., Garg, R., Allen, K. J. H., Berger, M. S., & Dadachova, E. (2020). Preclinical development of an actinium-225-labeled antibody radio-conjugate directed against CD45 for targeted conditioning and radioimmunotherapy. Biol. Blood Marrow Transplant., 26(3), S160–S161. DOI: 10.1016/j.bbmt.2019.12.714.LudwigD. L.BryanR. A.DawickiW.GeogheganE. M.LiangQ.GokhaleM.ReddyV.GargR.AllenK. J. H.BergerM. S.DadachovaE.2020Preclinical development of an actinium-225-labeled antibody radio-conjugate directed against CD45 for targeted conditioning and radioimmunotherapyBiol. Blood Marrow Transplant.263S160S16110.1016/j.bbmt.2019.12.714Open DOISearch in Google Scholar

Miederer, M., Scheinberg, D. A., & McDevitt, M. R. (2008). Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev., 60(12), 1371–1382.MiedererM.ScheinbergD. A.McDevittM. R.2008Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applicationsAdv. Drug Deliv. Rev.60121371138210.1016/j.addr.2008.04.009363045618514364Search in Google Scholar

Dekempeneer, Y., Keyaerts, M., Krasniqi, A., Puttemans, J., Muyldermans, S., Lahoutte, T., D’huyvetter, M., & Devoogdt, N. (2016). Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther., 16(8), 1035–1047. DOI: 10.1080/14712598.2016.1185412.DekempeneerY.KeyaertsM.KrasniqiA.PuttemansJ.MuyldermansS.LahoutteT.D’huyvetterM.DevoogdtN.2016Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicleExpert Opin. Biol. Ther.1681035104710.1080/14712598.2016.1185412494088527145158Open DOISearch in Google Scholar

Morgenstern, A., Apostolidis, C., & Bruchertseifer, F. (2020). Supply and clinical application of actinium-225 and bismuth-213. Semin. Nucl. Med., 50(2), 119–123. DOI: 10.1053/j.semnuclmed.2020.02.003.MorgensternA.ApostolidisC.BruchertseiferF.2020Supply and clinical application of actinium-225 and bismuth-213Semin. Nucl. Med.50211912310.1053/j.semnuclmed.2020.02.003Open DOISearch in Google Scholar

Artun, O. (2017). Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl. Radiat. Isot., 127, 166–172. DOI: 10.1016/j.apradiso.2017.06.006.ArtunO.2017Estimation of the production of medical Ac-225 on thorium material via proton acceleratorAppl. Radiat. Isot.12716617210.1016/j.apradiso.2017.06.00628628886Open DOISearch in Google Scholar

Kossert, K., Takács, M. P., & Nähle, O. (2020). Determination of the activity of 225Ac and of the half-lives of 213Po and 225Ac. Appl. Radiat. Isot., 156, 109020. DOI: 10.1016/j.apradiso.2019.109020.KossertK.TakácsM. P.NähleO.2020Determination of the activity of 225Ac and of the half-lives of 213Po and 225AcAppl. Radiat. Isot.15610902010.1016/j.apradiso.2019.109020Open DOISearch in Google Scholar

Bruchertseifer, F., Kellerbauer, A., Malmbeck, R., & Morgenstern, A. (2019). Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Compd. Radiopharm., 62(11), 794–802. DOI: 10.1002/jlcr.3792.BruchertseiferF.KellerbauerA.MalmbeckR.MorgensternA.2019Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demandJ. Label. Compd. Radiopharm.621179480210.1002/jlcr.3792Open DOISearch in Google Scholar

Allen, B. J. (2017). A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancer. Australas. Phys. Eng. Sci. Med., 40(2), 369–376. DOI: 10.1007/s13246-017-0534-6.AllenB. J.2017A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancerAustralas. Phys. Eng. Sci. Med.40236937610.1007/s13246-017-0534-6Open DOISearch in Google Scholar

Ruddy, F. H., Dulloo, A. R., Seidel, J. G., & Petrović, B. (2004). Separation of the alpha-emitting radioisotopes actinium-225 and bismuth-213 from thorium-229 using alpha recoil methods. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 213, 351–356. DOI: 10.1016/S0168-583X(03)01580-5.RuddyF. H.DullooA. R.SeidelJ. G.PetrovićB.2004Separation of the alpha-emitting radioisotopes actinium-225 and bismuth-213 from thorium-229 using alpha recoil methodsNucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms21335135610.1016/S0168-583X(03)01580-5Open DOISearch in Google Scholar

Artun, O. (2017). Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl. Radiat. Isot., 127, 166–172. DOI: 10.1016/j.apradiso.2017.06.006.ArtunO.2017Estimation of the production of medical Ac-225 on thorium material via proton acceleratorAppl. Radiat. Isot.12716617210.1016/j.apradiso.2017.06.006Open DOISearch in Google Scholar

Apostolidis, C., Molinet, R., McGinley, J., Abbas, K., Möllenbeck, J., & Morgenstern, A. (2005). Cyclotron production of Ac-225 for targeted alpha therapy. Appl. Radiat. Isot., 62(3), 383–387. DOI: 10.1016/j.apradiso.2004.06.013.ApostolidisC.MolinetR.McGinleyJ.AbbasK.MöllenbeckJ.MorgensternA.2005Cyclotron production of Ac-225 for targeted alpha therapyAppl. Radiat. Isot.62338338710.1016/j.apradiso.2004.06.01315607913Open DOISearch in Google Scholar

Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Avner, S., Barbier, R., Bardies, M., Bloomfield, P. M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S. J., Groiselle, C. J., Guez, D., Honore, P. F., Kerhoas-Cavata, S., Kirov, A. S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D. J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M. C., Maigne, L., Mayet, L., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F. R., Rey, M., Schaart, D. R., Schmidtlein, C. R., Simon, L., Song, T. Y., Vieira, J. M., Visvikis, D., Van der Walle, R., Wieers, E., & Morel, C. (2004). GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol., 49(19), 4543–4561. DOI: 10.1088/0031-9155/49/19/007.JanS.SantinG.StrulD.StaelensS.AssieK.AutretD.AvnerS.BarbierR.BardiesM.BloomfieldP. M.BrasseD.BretonV.BruyndonckxP.BuvatI.ChatziioannouA. F.ChoiY.ChungY. H.ComtatC.DonnarieixD.FerrerL.GlickS. J.GroiselleC. J.GuezD.HonoreP. F.Kerhoas-CavataS.KirovA. S.KohliV.KooleM.KrieguerM.van der LaanD. J.LamareF.LargeronG.LartizienC.LazaroD.MaasM. C.MaigneL.MayetL.MelotF.MerhebC.PennacchioE.PerezJ.PietrzykU.RannouF. R.ReyM.SchaartD. R.SchmidtleinC. R.SimonL.SongT. Y.VieiraJ. M.VisvikisD.Van der WalleR.WieersE.MorelC.2004GATE: a simulation toolkit for PET and SPECTPhys. Med. Biol.49194543456110.1088/0031-9155/49/19/007326738315552416Open DOISearch in Google Scholar

Grevillot, L., Bertrand, D., Dessy, F., Freud, N., & Sarrut, D. (2011). A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Phys. Med. Biol., 56(16), 5203–5219. DOI: 10.1088/0031-9155/56/16/008.GrevillotL.BertrandD.DessyF.FreudN.SarrutD.2011A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4Phys. Med. Biol.56165203521910.1088/0031-9155/56/16/00821791731Open DOISearch in Google Scholar

Grevillot, L., Boersma, D. J., Fuchs, H., Aitkenhead, A., Elia, A., Bolsa, M., Winterhalter, C., Vidal, M., Jan, S., Pietrzyk, U., Maigne, L., & Sarrut, D. (2020). Technical Note: GATE-RTion: a GATE/Geant4 release for clinical applications in scanned ion beam therapy. Med. Phys., 47(8), 3675–3681. DOI: 10.1002/mp.14242.GrevillotL.BoersmaD. J.FuchsH.AitkenheadA.EliaA.BolsaM.WinterhalterC.VidalM.JanS.PietrzykU.MaigneL.SarrutD.2020Technical Note: GATE-RTion: a GATE/Geant4 release for clinical applications in scanned ion beam therapyMed. Phys.4783675368110.1002/mp.1424232422684Open DOISearch in Google Scholar

Aitelcadi, Z., Toufique, Y., El Kharrim, A., Elmadani, S., Hilali, A., & Bouhali, O. (2018). Validation of the GATE Monte Carlo code for radiation therapy: Varian Clinac2300C/D. In Proceedings of the 2018 International Conference on Optimization and Applications, ICOA 2018, 31 May 2018, pp. 1–4. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/ICOA.2018.8370602.AitelcadiZ.ToufiqueY.El KharrimA.ElmadaniS.HilaliA.BouhaliO.2018Validation of the GATE Monte Carlo code for radiation therapy: Varian Clinac2300C/DIn Proceedings of the 2018 International Conference on Optimization and Applications, ICOA 201831 May 201814Institute of Electrical and Electronics Engineers Inc.10.1109/ICOA.2018.8370602Open DOISearch in Google Scholar

Aguiar, P., Casarejos, E., Silva-Rodriguez, J., Vilan, J. A., & Iglesias, A. (2015). Geant4-GATE simulation of a large plastic scintillator for muon radiography. IEEE Trans. Nucl. Sci., 62(3), 1233–1238. DOI: 10.1109/TNS.2015.2431297.AguiarP.CasarejosE.Silva-RodriguezJ.VilanJ. A.IglesiasA.2015Geant4-GATE simulation of a large plastic scintillator for muon radiographyIEEE Trans. Nucl. Sci.6231233123810.1109/TNS.2015.2431297Open DOISearch in Google Scholar

Lamare, F., Turzo, A., Bizais, Y., Le Rest, C. C., & Visvikis, D. (2006). Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys. Med. Biol., 51(4), 943–962. DOI: 10.1088/0031-9155/51/4/013.LamareF.TurzoA.BizaisY.Le RestC. C.VisvikisD.2006Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATEPhys. Med. Biol.51494396210.1088/0031-9155/51/4/01316467589Open DOISearch in Google Scholar

Papadimitroulas, P. (2017). Dosimetry applications in GATE Monte Carlo toolkit. Phys. Medica, 41, 136–140. DOI: 10.1016/j.ejmp.2017.02.005.PapadimitroulasP.2017Dosimetry applications in GATE Monte Carlo toolkitPhys. Medica4113614010.1016/j.ejmp.2017.02.00528236558Open DOISearch in Google Scholar

Thiam, C. O., Breton, V., Donnarieix, D., Habib, B., & Maigne, L. (2008). Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys. Med. Biol., 53(11), 3039–3055. DOI: 10.1088/0031-9155/53/11/019.ThiamC. O.BretonV.DonnarieixD.HabibB.MaigneL.2008Validation of a dose deposited by low-energy photons using GATE/GEANT4Phys. Med. Biol.53113039305510.1088/0031-9155/53/11/01918490808Open DOISearch in Google Scholar

Villoing, D., Marcatili, S., Garcia, M.-P., & Bardiès, M. (2017). Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Phys. Med. Biol., 62(5), 1885–1904. DOI: 10.1088/1361-6560/62/5/1885.VilloingD.MarcatiliS.GarciaM.-P.BardièsM.2017Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational modelPhys. Med. Biol.6251885190410.1088/1361-6560/62/5/188528182580Open DOISearch in Google Scholar

Geant4 Collaboration. (2018). Physics reference manual. CERN.Geant4 Collaboration2018Physics reference manualCERNSearch in Google Scholar

Maslov, O. D., Sabel’nikov, A. V., & Dmitriev, S. N. (2006). Preparation of 225Ac by 226Ra(γ,n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry, 48(2), 195–197. DOI: 10.1134/S1066362206020184.MaslovO. D.Sabel’nikovA. V.DmitrievS. N.2006Preparation of 225Ac by 226Ra(γ,n) photonuclear reaction on an electron accelerator, MT-25 microtronRadiochemistry48219519710.1134/S1066362206020184Open DOISearch in Google Scholar

Balasundar, S., Chandrasekaran, S., Subramanian, V., & Venkatraman, B. (2021). Investigations on neutron attenuation properties of poly-boron materials using Am-Be and 252Cf sources neutron spectra. Ann. Nucl. Energy, 153, 108083. DOI: 10.1016/j.anucene.2020.108083.BalasundarS.ChandrasekaranS.SubramanianV.VenkatramanB.2021Investigations on neutron attenuation properties of poly-boron materials using Am-Be and 252Cf sources neutron spectraAnn. Nucl. Energy15310808310.1016/j.anucene.2020.108083Open DOISearch in Google Scholar

eISSN:
1508-5791
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other