INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. National Council on Radiation Protection and Measurements. (2009). Ionizing radiation exposure of the population of the United States. Bethesda, MD: NCRP. (Report no. 160).Search in Google Scholar

2. Bruno, R. C. (1983). Sources of indoor radon in houses: A review. Journal of the Air Pollution Control Association, 33(2), 105–109. DOI: 10.1080/00022470.1983.10465550.10.1080/00022470.1983.10465550Search in Google Scholar

3. Ruggiero, L., Bigi, S., Ciotoli, G., Galli, G., Giustini, F., Lombardi, S., Lucchetti, C., Pizzino, L., Sciarra, A., Sirianni, P., Tartarello, M. C., & Voltaggio, M. (2018). Relationships between geogenic radon potential and gamma ray maps with indoor radon levels at Caprarola municipality (central Italy). In GARMM – 14. International Workshop on the Geological Aspects of Radon Risk Mapping, 18–20 September 2018, Prague, Czech Republic. (extended abstract).Search in Google Scholar

4. Tuccimei, P., Castelluccio, M., Soligo, M., & Moroni, M. (2009). Radon exhalation rates of building materials: experimental, analytical protocol and classification criteria. In D. N. Cornejo & J. L. Haro (Eds.), Building materials: Properties, performance and applications (pp. 259–273). Hauppauge, NY: Nova Science Publishers.Search in Google Scholar

5. Lucchetti, C., Briganti, A., Castelluccio, M., Galli, G., Santilli, S., Soligo, M., & Tuccimei, P. (2019). Integrating radon and thoron flux data with gamma radiation mapping in radon-prone areas. The case of volcanic outcrops in a highly-urbanized city (Roma, Italy). J. Environ. Radioact., 202, 41–50. DOI: 10.1016/j.jenvrad.2019.02.004.10.1016/j.jenvrad.2019.02.00430776702Search in Google Scholar

6. Tuccimei, P., Moroni, M., & Norcia, D. (2006). Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration. Appl. Radiat. Isot., 64(2), 254–263.10.1016/j.apradiso.2005.07.01616154752Search in Google Scholar

7. Wiegand, J. (2001). A guideline for the evaluation of the soil radon potential based on geogenic and anthropogenic parameters. Environ. Geol., 40, 949–963.10.1007/s002540100287Search in Google Scholar

8. Scarciglia, F., Tuccimei, P., Vacca, A., Barca, D., Pulice, I., Salzano, R., & Soligo, M. (2011). Soil genesis, morphodynamic processes and chronological implications in two soil transects of SE Sardinia, Italy: traditional pedological study coupled with laser ablation ICP-MS and radionuclide analyses. Geoderma, 162, 39–64. DOI: 10.1016/j.geoderma.2011.01.004.10.1016/j.geoderma.2011.01.004Search in Google Scholar

9. De Simone, G., Lucchetti, C., Galli, G., & Tuccimei, P. (2016). Correcting for H2O interference using electrostatic collection-based silicon detectors. J. Environ. Radioact., 162/163, 146–153. DOI: 10.1016/j. jenvrad.2016.05.021.Search in Google Scholar

10. Tuccimei, P., Castelluccio, M., Moretti, S., Mollo, S., Vinciguerra, S., & Scarlato, P. (2011). Thermal enhancement of radon emission from rocks. Implications for laboratory experiments under increasing deformation. In B. Veress & J. Szigethy (Eds.), Horizons in earth science research (Vol. 4, Chapter 9, pp. 247–256). Hauppauge, NY: Nova Science Publishers.Search in Google Scholar

eISSN:
0029-5922
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other