This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abu Arqoub, O., Elega, A. A., Efe Özad, B., Dwikat, H., & Oloyede, F. A. (2020). Mapping the scholarship of fake news research: A systematic review. Journalism Practice, 16(1), 56–86. https://doi.org/10.1080/17512786.2020.1805791Abu ArqoubO.ElegaA. A.Efe ÖzadB.DwikatH.OloyedeF. A.2020Mapping the scholarship of fake news research: A systematic reviewJournalism Practice1615686https://doi.org/10.1080/17512786.2020.1805791Search in Google Scholar
Acerbi, A. (2016). A cultural evolution approach to digital media. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00636AcerbiA.2016A cultural evolution approach to digital mediaFrontiers in Human Neuroscience10https://doi.org/10.3389/fnhum.2016.00636Search in Google Scholar
Acerbi, A. (2019). Cognitive attraction and online misinformation. Palgrave Communications, 5(1), 15. https://doi.org/10.1057/s41599-019-0224-yAcerbiA.2019Cognitive attraction and online misinformationPalgrave Communications5115https://doi.org/10.1057/s41599-019-0224-ySearch in Google Scholar
Acerbi, A. (2021). From storytelling to Facebook: Content biases when retelling or sharing a story [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/br56yAcerbiA.2021From storytelling to Facebook: Content biases when retelling or sharing a story [Preprint]Open Science Frameworkhttps://doi.org/10.31219/osf.io/br56ySearch in Google Scholar
Altay, S., Hacquin, A.-S., & Mercier, H. (2022). Why do so few people share fake news? It hurts their reputation. New Media & Society, 24(6), 1303–1324. https://doi.org/10.1177/1461444820969893AltayS.HacquinA.-S.MercierH.2022Why do so few people share fake news? It hurts their reputationNew Media & Society24613031324https://doi.org/10.1177/1461444820969893Search in Google Scholar
Apenteng, B. A., Ekpo, I. B., Mutiso, F. M., Akowuah, E. A., & Opoku, S. T. (2020). Examining the relationship between social media engagement and hospital revenue. Health Marketing Quarterly, 37(1), 10–21. https://doi.org/10.1080/07359683.2020.1713575ApentengB. A.EkpoI. B.MutisoF. M.AkowuahE. A.OpokuS. T.2020Examining the relationship between social media engagement and hospital revenueHealth Marketing Quarterly3711021https://doi.org/10.1080/07359683.2020.1713575Search in Google Scholar
Bak, P. de P., Walter, J. G., & Bechmann, A. (2022). Digital false information at scale in the European Union: Current state of research in various disciplines, and future directions. New Media & Society, 25(10), 2800–2819. https://doi.org/10.1177/14614448221122146BakP. de P.WalterJ. G.BechmannA.2022Digital false information at scale in the European Union: Current state of research in various disciplines, and future directionsNew Media & Society251028002819https://doi.org/10.1177/14614448221122146Search in Google Scholar
Bebbington, K., MacLeod, C., Ellison, T. M., & Fay, N. (2017). The sky is falling: Evidence of a negativity bias in the social transmission of information. Evolution and Human Behavior, 38(1), 92–101. https://doi.org/10.1016/j.evolhumbehav.2016.07.004BebbingtonK.MacLeodC.EllisonT. M.FayN.2017The sky is falling: Evidence of a negativity bias in the social transmission of informationEvolution and Human Behavior38192101https://doi.org/10.1016/j.evolhumbehav.2016.07.004Search in Google Scholar
Berger, J., & Milkman, K. L. (2010). Social transmission, emotion, and the virality of online content [Marketing Science Institute Working Paper Series 2010, Report No. 10-114]. https://thearf-org-unified-admin.s3.amazonaws.com/MSI/2020/06/MSI_Report_10-114.pdfBergerJ.MilkmanK. L.2010Social transmission, emotion, and the virality of online content[Marketing Science Institute Working Paper Series 2010, Report No. 10-114]. https://thearf-org-unified-admin.s3.amazonaws.com/MSI/2020/06/MSI_Report_10-114.pdfSearch in Google Scholar
Berriche, M., & Altay, S. (2020). Internet users engage more with phatic posts than with health misinformation on Facebook. Palgrave Communications, 6(1), Article 71. https://doi.org/10.1057/s41599-020-0452-1BerricheM.AltayS.2020Internet users engage more with phatic posts than with health misinformation on FacebookPalgrave Communications61Article 71. https://doi.org/10.1057/s41599-020-0452-1Search in Google Scholar
Blaine, T., & Boyer, P. (2018). Origins of sinister rumors: A preference for threat-related material in the supply and demand of information. Evolution and Human Behavior, 39(1), 67–75. https://doi.org/10.1016/j.evolhumbehav.2017.10.001BlaineT.BoyerP.2018Origins of sinister rumors: A preference for threat-related material in the supply and demand of informationEvolution and Human Behavior3916775https://doi.org/10.1016/j.evolhumbehav.2017.10.001Search in Google Scholar
Boyer, P., & Parren, N. (2015). Threat-related information suggests competence: A possible factor in the spread of rumors. PLOS ONE, 10(6), e0128421. https://doi.org/10.1371/journal.pone.0128421BoyerP.ParrenN.2015Threat-related information suggests competence: A possible factor in the spread of rumorsPLOS ONE106e0128421https://doi.org/10.1371/journal.pone.0128421Search in Google Scholar
Brady, W. J., Gantman, A. P., & Van Bavel, J. J. (2020). Attentional capture helps explain why moral and emotional content go viral. Journal of Experimental Psychology: General, 149(4), 746–756. https://doi.org/10.1037/xge0000673BradyW. J.GantmanA. P.Van BavelJ. J.2020Attentional capture helps explain why moral and emotional content go viralJournal of Experimental Psychology: General1494746756https://doi.org/10.1037/xge0000673Search in Google Scholar
Bruni, L., Francalanci, C., & Giacomazzi, P. (2012). The role of multimedia content in determining the virality of social media information. Information, 3(3), 278–289. https://doi.org/10.3390/info3030278BruniL.FrancalanciC.GiacomazziP.2012The role of multimedia content in determining the virality of social media informationInformation33278289https://doi.org/10.3390/info3030278Search in Google Scholar
Bucher, T., & Helmond, A. (2018). The affordances of social media platforms. In The SAGE handbook of social media. Sage. https://doi.org/10.4135/9781473984066BucherT.HelmondA.2018The affordances of social media platformsInThe SAGE handbook of social mediaSagehttps://doi.org/10.4135/9781473984066Search in Google Scholar
Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using Stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01BürknerP.-C.2017brms: An R package for bayesian multilevel models using StanJournal of Statistical Software801https://doi.org/10.18637/jss.v080.i01Search in Google Scholar
De León, E., & Trilling, D. (2021). A sadness bias in political news sharing? The role of discrete emotions in the engagement and dissemination of political news on Facebook. Social Media + Society, 7(4), 205630512110597. https://doi.org/10.1177/20563051211059710De LeónE.TrillingD.2021A sadness bias in political news sharing? The role of discrete emotions in the engagement and dissemination of political news on FacebookSocial Media + Society74205630512110597. https://doi.org/10.1177/20563051211059710Search in Google Scholar
de Oliveira, D. V. B., & Albuquerque, U. P. (2021). Cultural evolution and digital media: Diffusion of fake news about COVID-19 on Twitter. SN Computer Science, 2(6), 430. https://doi.org/10.1007/s42979-021-00836-wde OliveiraD. V. B.AlbuquerqueU. P.2021Cultural evolution and digital media: Diffusion of fake news about COVID-19 on TwitterSN Computer Science26430https://doi.org/10.1007/s42979-021-00836-wSearch in Google Scholar
Derczynski, L., Albert-Lindqvist, T. O., Bendsen, M. V., Inie, N., Pedersen, V. D., & Pedersen, J. E. (2019, October 31). Misinformation on Twitter during the Danish national election: A case study. Proceedings of the Conference for Truth and Trust Online 2019. https://doi.org/10.36370/tto.2019.16DerczynskiL.Albert-LindqvistT. O.BendsenM. V.InieN.PedersenV. D.PedersenJ. E.2019October31Misinformation on Twitter during the Danish national election: A case studyProceedings of the Conference for Truth and Trust Online 2019https://doi.org/10.36370/tto.2019.16Search in Google Scholar
DR Analyse. (2024). Medieudviklingen 2023. Danmarks Radio (DR). https://tinyurl.com/34zwmy44DR Analyse2024Medieudviklingen 2023Danmarks Radio (DR)https://tinyurl.com/34zwmy44Search in Google Scholar
Dunbar, R. I. M. (2004). Gossip in evolutionary perspective. Review of General Psychology, 8(2), 100–110. https://doi.org/10.1037/1089-2680.8.2.100DunbarR. I. M.2004Gossip in evolutionary perspectiveReview of General Psychology82100110https://doi.org/10.1037/1089-2680.8.2.100Search in Google Scholar
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36(5), 562–572. https://doi.org/10.1080/03014460902960289DunbarR. I. M.2009The social brain hypothesis and its implications for social evolutionAnnals of Human Biology365562572https://doi.org/10.1080/03014460902960289Search in Google Scholar
Ferrara, E., & Yang, Z. (2015). Quantifying the effect of sentiment on information diffusion in social media. PeerJ Computer Science, 1, e26. https://doi.org/10.7717/peerj-cs.26FerraraE.YangZ.2015Quantifying the effect of sentiment on information diffusion in social mediaPeerJ Computer Science1e26https://doi.org/10.7717/peerj-cs.26Search in Google Scholar
Fine, J. A., & Hunt, M. F. (2023). Negativity and elite message diffusion on social media. Political Behavior, 45(3), 955–973. https://doi.org/10.1007/s11109-021-09740-8FineJ. A.HuntM. F.2023Negativity and elite message diffusion on social mediaPolitical Behavior453955973https://doi.org/10.1007/s11109-021-09740-8Search in Google Scholar
Funke, D. (2020). PolitiFact | fact-checking ‘Plandemic’: A documentary full of false conspiracy theories about the coronavirus. https://www.politifact.com/article/2020/may/08/fact-checking-plandemic-documentary-full-false-con/FunkeD.2020PolitiFact | fact-checking ‘Plandemic’: A documentary full of false conspiracy theories about the coronavirushttps://www.politifact.com/article/2020/may/08/fact-checking-plandemic-documentary-full-false-con/Search in Google Scholar
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for bayesian models.https://mc-stan.org/bayesplot/GabryJ.MahrT.2022bayesplot: Plotting for bayesian modelshttps://mc-stan.org/bayesplot/Search in Google Scholar
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for bayesian regression models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100GelmanA.GoodrichB.GabryJ.VehtariA.2019R-squared for bayesian regression modelsThe American Statistician733307309https://doi.org/10.1080/00031305.2018.1549100Search in Google Scholar
Goodrich, K. (2011). Anarchy of effects? Exploring attention to online advertising and multiple outcomes. Psychology & Marketing, 28(4), 417–440. https://doi.org/10.1002/mar.20371GoodrichK.2011Anarchy of effects? Exploring attention to online advertising and multiple outcomesPsychology & Marketing284417440https://doi.org/10.1002/mar.20371Search in Google Scholar
Greene, W. H. (2003). Econometric analysis (5th ed). Prentice Hall.GreeneW. H.2003Econometric analysis5th edPrentice HallSearch in Google Scholar
Gross, J., & Von Wangenheim, F. (2022). Influencer marketing on Instagram: Empirical research on social media engagement with sponsored posts. Journal of Interactive Advertising, 22(3), 289–310. https://doi.org/10.1080/15252019.2022.2123724GrossJ.Von WangenheimF.2022Influencer marketing on Instagram: Empirical research on social media engagement with sponsored postsJournal of Interactive Advertising223289310https://doi.org/10.1080/15252019.2022.2123724Search in Google Scholar
Hartig, F. (2024). Installing, loading and citing the package [Computer software]. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.htmlHartigF.2024Installing, loading and citing the package [Computer software]https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.htmlSearch in Google Scholar
Hewstone, M., Rubin, M., & Willis, H. (2002). Intergroup bias. Annual Review of Psychology, 53(1), 575–604. https://doi.org/10.1146/annurev.psych.53.100901.135109HewstoneM.RubinM.WillisH.2002Intergroup biasAnnual Review of Psychology531575604https://doi.org/10.1146/annurev.psych.53.100901.135109Search in Google Scholar
Hilbe, J. M. (2011). Negative binomial regression (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511973420HilbeJ. M.2011Negative binomial regression2nd ed.Cambridge University Presshttps://doi.org/10.1017/CBO9780511973420Search in Google Scholar
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences, 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003KendalR. L.BoogertN. J.RendellL.LalandK. N.WebsterM.JonesP. L.2018Social learning strategies: Bridge-building between fieldsTrends in Cognitive Sciences227651665https://doi.org/10.1016/j.tics.2018.04.003Search in Google Scholar
King, K. K., & Wang, B. (2023). Diffusion of real versus misinformation during a crisis event: A big data-driven approach. International Journal of Information Management, 71, 102390. https://doi.org/10.1016/j.ijinfomgt.2021.102390KingK. K.WangB.2023Diffusion of real versus misinformation during a crisis event: A big data-driven approachInternational Journal of Information Management71102390https://doi.org/10.1016/j.ijinfomgt.2021.102390Search in Google Scholar
Li, Y., & Xie, Y. (2020). Is a picture worth a thousand words? An empirical study of image content and social media engagement – Yiyi Li, Ying Xie, 2020. Journal of Marketing Research. https://journals.sagepub.com/doi/full/10.1177/0022243719881113?utm_source=chatgpt.comLiY.XieY.2020Is a picture worth a thousand words? An empirical study of image content and social media engagement – Yiyi Li, Ying Xie, 2020Journal of Marketing Researchhttps://journals.sagepub.com/doi/full/10.1177/0022243719881113?utm_source=chatgpt.comSearch in Google Scholar
López-García, X., Costa-Sánchez, C., & Vizoso, Á. (2021). Journalistic fact-checking of information in pandemic: Stakeholders, hoaxes, and strategies to fight disinformation during the Covid-19 crisis in Spain. International Journal of Environmental Research and Public Health, 18(3), 1227. https://doi.org/10.3390/ijerph18031227López-GarcíaX.Costa-SánchezC.VizosoÁ.2021Journalistic fact-checking of information in pandemic: Stakeholders, hoaxes, and strategies to fight disinformation during the Covid-19 crisis in SpainInternational Journal of Environmental Research and Public Health1831227https://doi.org/10.3390/ijerph18031227Search in Google Scholar
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139LüdeckeD.Ben-ShacharM.PatilI.WaggonerP.MakowskiD.2021performance: An R Package for Assessment, Comparison and Testing of Statistical ModelsJournal of Open Source Software6603139https://doi.org/10.21105/joss.03139Search in Google Scholar
Luo, H., Meng, X., Zhao, Y., & Cai, M. (2023). Exploring the impact of sentiment on multi-dimensional information dissemination using COVID-19 data in China. Computers in Human Behavior, 144, 107733. https://doi.org/10.1016/j.chb.2023.107733LuoH.MengX.ZhaoY.CaiM.2023Exploring the impact of sentiment on multi-dimensional information dissemination using COVID-19 data in ChinaComputers in Human Behavior144107733https://doi.org/10.1016/j.chb.2023.107733Search in Google Scholar
Lyons, A., & Kashima, Y. (2001). The reproduction of culture: Communication processes tend to maintain cultural stereotypes. Social Cognition, 19(3), 372–394. https://doi.org/10.1521/soco.19.3.372.21470LyonsA.KashimaY.2001The reproduction of culture: Communication processes tend to maintain cultural stereotypesSocial Cognition193372394https://doi.org/10.1521/soco.19.3.372.21470Search in Google Scholar
Martin, D., Cunningham, S. J., Hutchison, J., Slessor, G., & Smith, K. (2017). How societal stereotypes might form and evolve via cumulative cultural evolution. Social and Personality Psychology Compass, 11(9), e12338. https://doi.org/10.1111/spc3.12338MartinD.CunninghamS. J.HutchisonJ.SlessorG.SmithK.2017How societal stereotypes might form and evolve via cumulative cultural evolutionSocial and Personality Psychology Compass119e12338https://doi.org/10.1111/spc3.12338Search in Google Scholar
Marwick, A. E., & boyd, d. (2011). I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience. New Media & Society, 13(1), 114–133. https://doi.org/10.1177/1461444810365313MarwickA. E.boydd.2011I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audienceNew Media & Society131114133https://doi.org/10.1177/1461444810365313Search in Google Scholar
McGuigan, N., & Cubillo, M. (2013). Information transmission in young children: When social information is more important than nonsocial information. The Journal of Genetic Psychology, 174(6), 605–619. https://doi.org/10.1080/00221325.2012.749833McGuiganN.CubilloM.2013Information transmission in young children: When social information is more important than nonsocial informationThe Journal of Genetic Psychology1746605619https://doi.org/10.1080/00221325.2012.749833Search in Google Scholar
Mesoudi, A., Whiten, A., & Dunbar, R. (2006). A bias for social information in human cultural transmission. British Journal of Psychology, 97(3), 405–423. https://doi.org/10.1348/000712605X85871MesoudiA.WhitenA.DunbarR.2006A bias for social information in human cultural transmissionBritish Journal of Psychology973405423https://doi.org/10.1348/000712605X85871Search in Google Scholar
Metzler, H., & Garcia, D. (2022). Social drivers and algorithmic mechanisms on digital media [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/cxa9uMetzlerH.GarciaD.2022Social drivers and algorithmic mechanisms on digital media[Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/cxa9uSearch in Google Scholar
Metzler, H., & Garcia, D. (2023). Social drivers and algorithmic mechanisms on digital media. Perspectives on Psychological Science, 19(5), 735–748. https://doi.org/10.1177/17456916231185057MetzlerH.GarciaD.2023Social drivers and algorithmic mechanisms on digital mediaPerspectives on Psychological Science195735748https://doi.org/10.1177/17456916231185057Search in Google Scholar
Morin, O., & Acerbi, A. (2017). Birth of the cool: A two-centuries decline in emotional expression in Anglophone fiction. Cognition and Emotion, 31(8), 1663–1675. https://doi.org/10.1080/02699931.2016.1260528MorinO.AcerbiA.2017Birth of the cool: A two-centuries decline in emotional expression in Anglophone fictionCognition and Emotion31816631675https://doi.org/10.1080/02699931.2016.1260528Search in Google Scholar
Mousavi, M., Davulcu, H., Ahmadi, M., Axelrod, R., Davis, R., & Atran, S. (2022). Effective messaging on social media: What makes online content go viral? Proceedings of the ACM Web Conference 2022, 2957–2966. https://doi.org/10.1145/3485447.3512016MousaviM.DavulcuH.AhmadiM.AxelrodR.DavisR.AtranS.2022Effective messaging on social media: What makes online content go viral?Proceedings of the ACM Web Conference 202229572966https://doi.org/10.1145/3485447.3512016Search in Google Scholar
Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(2), 263–273. https://doi.org/10.1037/0278-7393.33.2.263NairneJ. S.ThompsonS. R.PandeiradaJ. N. S.2007Adaptive memory: Survival processing enhances retentionJournal of Experimental Psychology: Learning, Memory, and Cognition332263273https://doi.org/10.1037/0278-7393.33.2.263Search in Google Scholar
Newman, N., Fletcher, R., Robertson, C. T., Ross Arguedas, A., & Nielsen, R. K. (2024). Reuters Institute digital news report 2024. Reuters Institute for the Study of Journalism, University of Oxford. https://doi.org/10.60625/RISJ-VY6N-4V57NewmanN.FletcherR.RobertsonC. T.Ross ArguedasA.NielsenR. K.2024Reuters Institute digital news report 2024Reuters Institute for the Study of Journalism, University of Oxfordhttps://doi.org/10.60625/RISJ-VY6N-4V57Search in Google Scholar
Nissen, I. A., Walter, J. G., Charquero-Ballester, M., & Bechmann, A. (2022). Digital infrastructures of COVID-19 misinformation: A new conceptual and analytical perspective on fact-checking. Digital Journalism, 10(5), 738–760. https://doi.org/10.1080/21670811.2022.2026795NissenI. A.WalterJ. G.Charquero-BallesterM.BechmannA.2022Digital infrastructures of COVID-19 misinformation: A new conceptual and analytical perspective on fact-checkingDigital Journalism105738760https://doi.org/10.1080/21670811.2022.2026795Search in Google Scholar
OSF. (2023, October 16). Sharing, commenting and reacting to Danish Misinformation: A Case Study of Cognitive Attraction on Facebook [Project]. https://osf.io/dqrky/?view_only=6680bf5c343344f48ead45fe7314af0eOSF2023October16Sharing, commenting and reacting to Danish Misinformation: A Case Study of Cognitive Attraction on Facebook[Project]. https://osf.io/dqrky/?view_only=6680bf5c343344f48ead45fe7314af0eSearch in Google Scholar
Pieters, R., & Wedel, M. (2004). Attention capture and transfer in advertising: Brand, pictorial, and text-size effects. Journal of Marketing, 68(2), 36–50. https://doi.org/10.1509/jmkg.68.2.36.27794PietersR.WedelM.2004Attention capture and transfer in advertising: Brand, pictorial, and text-size effectsJournal of Marketing6823650https://doi.org/10.1509/jmkg.68.2.36.27794Search in Google Scholar
R Core Team. (2023). R: A language and environment for statistical computing. https://www.R-project.org/R Core Team2023R: A language and environment for statistical computinghttps://www.R-project.org/Search in Google Scholar
Rathje, S., Robertson, C., Brady, W. J., & Van Bavel, J. J. (2024). People think that social media platforms do (but should not) amplify divisive content. Perspectives on Psychological Science, 19(5), 781–795. https://doi.org/10.1177/17456916231190392RathjeS.RobertsonC.BradyW. J.Van BavelJ. J.2024People think that social media platforms do (but should not) amplify divisive contentPerspectives on Psychological Science195781795https://doi.org/10.1177/17456916231190392Search in Google Scholar
Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296–320. https://doi.org/10.1207/S15327957PSPR0504_2RozinP.RoyzmanE. B.2001Negativity bias, negativity dominance, and contagionPersonality and Social Psychology Review54296320https://doi.org/10.1207/S15327957PSPR0504_2Search in Google Scholar
Scheffer, M., van de Leemput, I., Weinans, E., & Bollen, J. (2021). The rise and fall of rationality in language. Proceedings of the National Academy of Sciences, 118(51), e2107848118. https://doi.org/10.1073/pnas.2107848118SchefferM.van de LeemputI.WeinansE.BollenJ.2021The rise and fall of rationality in languageProceedings of the National Academy of Sciences11851e2107848118https://doi.org/10.1073/pnas.2107848118Search in Google Scholar
Schöne, J. P., Parkinson, B., & Goldenberg, A. (2021). Negativity spreads more than positivity on Twitter after both positive and negative political situations. Affective Science, 2(4), 379–390. https://doi.org/10.1007/s42761-021-00057-7SchöneJ. P.ParkinsonB.GoldenbergA.2021Negativity spreads more than positivity on Twitter after both positive and negative political situationsAffective Science24379390https://doi.org/10.1007/s42761-021-00057-7Search in Google Scholar
Song, X., Petrak, J., Jiang, Y., Singh, I., Maynard, D., & Bontcheva, K. (2021). Classification aware neural topic model and its application on a new COVID-19 disinformation corpus. PLOS ONE, 16(2), e0247086. https://doi.org/10.1371/journal.pone.0247086SongX.PetrakJ.JiangY.SinghI.MaynardD.BontchevaK.2021Classification aware neural topic model and its application on a new COVID-19 disinformation corpusPLOS ONE162e0247086https://doi.org/10.1371/journal.pone.0247086Search in Google Scholar
Statista. (2023). Most popular social networks worldwide as of January 2023, ranked by number of monthly active users. https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/Statista2023Most popular social networks worldwide as of January 2023, ranked by number of monthly active usershttps://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/Search in Google Scholar
Statista. (2024). Daily social media usage worldwide. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/Statista2024Daily social media usage worldwidehttps://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/Search in Google Scholar
Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/MIS0742-1222290408StieglitzS.Dang-XuanL.2013Emotions and information diffusion in social media—Sentiment of microblogs and sharing behaviorJournal of Management Information Systems294217248https://doi.org/10.2753/MIS0742-1222290408Search in Google Scholar
Stubbersfield, J. M. (2022). Content biases in three phases of cultural transmission: A review. Culture and Evolution, 19(1), 41–60. https://doi.org/10.1556/2055.2022.00024StubbersfieldJ. M.2022Content biases in three phases of cultural transmission: A reviewCulture and Evolution1914160https://doi.org/10.1556/2055.2022.00024Search in Google Scholar
Stubbersfield, J. M. (2025). Content-based learning biases. In T. Shackelford (Ed.), Encyclopedia of religious psychology and behavior (pp. 1–16). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38971-9_134-1StubbersfieldJ. M.2025Content-based learning biasesInShackelfordT.(Ed.),Encyclopedia of religious psychology and behavior116Springer NatureSwitzerlandhttps://doi.org/10.1007/978-3-031-38971-9_134-1Search in Google Scholar
Stubbersfield, J. M., Flynn, E. G., & Tehrani, J. J. (2017). Cognitive evolution and the transmission of popular narratives: A literature review and application to urban legends. Evolutionary Studies in Imaginative Culture, 1(1), 121–136. https://doi.org/10.26613/esic.1.1.20StubbersfieldJ. M.FlynnE. G.TehraniJ. J.2017Cognitive evolution and the transmission of popular narratives: A literature review and application to urban legendsEvolutionary Studies in Imaginative Culture11121136https://doi.org/10.26613/esic.1.1.20Search in Google Scholar
Stubbersfield, J. M., Tehrani, J. J., & Flynn, E. G. (2015). Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legends. British Journal of Psychology, 106(2), 288–307. https://doi.org/10.1111/bjop.12073StubbersfieldJ. M.TehraniJ. J.FlynnE. G.2015Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legendsBritish Journal of Psychology1062288307https://doi.org/10.1111/bjop.12073Search in Google Scholar
TjekDet. (2020, August 4). Arbejdsproces og etisk regelsæt [Work process and ethical code]. Tjekdet. https://www.tjekdet.dk/arbejdsproces-og-etisk-regelsaetTjekDet2020August4Arbejdsproces og etisk regelsæt [Work process and ethical code]Tjekdethttps://www.tjekdet.dk/arbejdsproces-og-etisk-regelsaetSearch in Google Scholar
Tsugawa, S., & Ohsaki, H. (2015). Negative messages spread rapidly and widely on social media. Proceedings of the 2015 ACM on Conference on Online Social Networks, 151–160. https://doi.org/10.1145/2817946.2817962TsugawaS.OhsakiH.2015Negative messages spread rapidly and widely on social mediaProceedings of the 2015 ACM on Conference on Online Social Networks151160https://doi.org/10.1145/2817946.2817962Search in Google Scholar
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559VosoughiS.RoyD.AralS.2018The spread of true and false news onlineScience359638011461151https://doi.org/10.1126/science.aap9559Search in Google Scholar
Warrens, M. J. (2015). Five Ways to Look at Cohen’s Kappa. Journal of Psychology & Psychotherapy, 5(4), 1000197. https://doi.org/10.4172/2161-0487.1000197WarrensM. J.2015Five Ways to Look at Cohen’s KappaJournal of Psychology & Psychotherapy541000197https://doi.org/10.4172/2161-0487.1000197Search in Google Scholar
WHO. (2020). Infodemic. http://www.who.int/westernpacific/health-topics/infodemicWHO2020Infodemichttp://www.who.int/westernpacific/health-topics/infodemicSearch in Google Scholar
Youngblood, M., Stubbersfield, J. M., Morin, O., Glassman, R., & Acerbi, A. (2023). Negativity bias in the spread of voter fraud conspiracy theory tweets during the 2020 US election. Humanities and Social Sciences Communications, 10(1), 573. https://doi.org/10.1057/s41599-023-02106-xYoungbloodM.StubbersfieldJ. M.MorinO.GlassmanR.AcerbiA.2023Negativity bias in the spread of voter fraud conspiracy theory tweets during the 2020 US electionHumanities and Social Sciences Communications101573https://doi.org/10.1057/s41599-023-02106-xSearch in Google Scholar