Hybrid Regression Models for Predicting Hydration: A Case Study in Pediatric Hemodialysis
10 set 2025
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 10 set 2025
Pagine: 212 - 222
Ricevuto: 21 lug 2024
Accettato: 14 lug 2025
DOI: https://doi.org/10.2478/msr-2025-0025
Parole chiave
© 2025 Suzana Djordjevic et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Results achieved with the EN, GBR, SVR, hybrid EN-GBR and hybrid EN-SVR models_
Real values | EN values | GBR values | SVR values | EN-GBR values | EN-SVR values | |
---|---|---|---|---|---|---|
Patient A | −0.3 | −0.48129796 | −0.18628015 | −0.81704017 | −0.3527895 | −0.46503815 |
−0.8 | −0.91890762 | −0.80598051 | −1.27369152 | −0.80427712 | −0.90426637 | |
0.2 | 0.50873695 | 0.23782386 | 0.39220703 | 0.20545681 | 0.46932447 | |
−1.2 | −1.11180823 | −1.16581552 | −1.27910948 | −1.18921171 | −1.13263351 | |
−2.1 | −2.2058463 | −2.09972043 | −1.83435081 | −2.09690962 | −2.19735346 | |
−2.2 | −2.30081989 | −2.18690249 | −1.91096666 | −2.1958786, | −2.30016087 | |
−5.6 | −5.05723497 | −5.59310215 | −3.86500347 | −5.59597978 | −5.12703839 | |
−2.8 | −2.83149824 | −2.79700751 | −2.38790569 | −2.79852713 | −2.84700099 | |
−3.1 | −3.28661257 | −3.10436425 | −2.90010456 | −3.08728966 | −3.21576016 | |
1.1 | 1.13724622 | 1.08674662 | 0.91430495 | 1.08914686 | 1.13514346 | |
Patient B | 2.3 | 2.05498245 | 2.30474957 | 2.07372147 | 2.30325372 | 2.32446905 |
0.6 | 0.67973341 | 0.62278249 | 0.72046415 | 0.61362807 | 0.70735133 | |
−1.1 | −0.98525658 | −1.16755784 | −1.07055426 | −1.10503825 | −1.14305158 | |
−1.3 | −1.19201570 | −1.40885596 | −1.32889134 | −1.32276658 | −1.37031130 | |
−1.8 | −1.72955661 | −1.73768376 | −1.84493265 | −1.80881611 | −1.86989233 | |
−1.7 | −1.66446912 | −1.69278792 | −1.80055228 | −1.73364828 | −1.81502659 | |
0.9 | 0.85001765 | 0.93925670 | 0.88927059 | 0.91509444 | 0.92993130 | |
−3.8 | −3.84511421 | −3.89311761 | −3.89983185 | −3.79272144 | −3.84172986 | |
−4.7 | −4.97572847 | −4.68874558 | −4.75482693 | −4.72968422 | −4.79968123 | |
−2.2 | −2.16571580 | −2.17217104 | −2.26907722 | −2.20450492 | −2.20647985 |
Performance metrics_
RMSE | MAPE | |
---|---|---|
|
|
|
Model comparisons_
Model | RMSE | MAPE | ||
---|---|---|---|---|
Patient A | EN | 0.97770 | 0.33319 | 0.103 |
GBR | 0.99969 | 0.50409 | 0.012 | |
SVR | 0.92285 | 0.53131 | 0.095 | |
EN-GBR | 0.99960 | 0.16218 | 0.007 | |
EN-SVR | 0.98259 | 0.30489 | 0.092 | |
Ridge regression | 0.91005 | 0.44157 | 0.243 | |
Kernel Ridge | 0.90765 | 0.43811 | 0.257 | |
Bayesian Ridge | 0.89345 | 0.45118 | 0.256 | |
RF | 0.68556 | 0.46803 | 0.433 | |
LSTM | 0.95325 | 0.38197 | 0.136 | |
Patient B | EN | 0.97998 | 0.28097 | 0.055 |
GBR | 0.99802 | 0.27370 | 0.015 | |
SVR | 0.97227 | 0.54102 | 0.141 | |
EN-GBR | 0.99919 | 0.10223 | 0.011 | |
EN-SVR | 0.96178 | 0.37549 | 0.053 | |
Ridge regression | 0.97089 | 0.34216 | 0.062 | |
Kernel Ridge | 0.96991 | 0.34059 | 0.063 | |
Bayesian Ridge | 0.89360 | 0.46269 | 0.055 | |
RF | 0.93517 | 0.35403 | 0.789 | |
LSTM | 0.84637 | 0.32715 | 0.408 |