This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Shahani, B. T., Day, T. J., Cros, D., Khalil, N., Kneebone, C. S. (1990). RR interval variation and the sympathetic skin response in the assessment of autonomic function in peripheral neuropathy. Archives of Neurology, 47 (6), 659–664. https://doi.org/10.1001/archneur.1990.00530060069021ShahaniB. T.DayT. J.CrosD.KhalilN.KneeboneC. S.1990RR interval variation and the sympathetic skin response in the assessment of autonomic function in peripheral neuropathyArchives of Neurology476659664https://doi.org/10.1001/archneur.1990.00530060069021Search in Google Scholar
Stålberg, E. V., Nogués, M. A. (1989). Automatic analysis of heart rate variation: I. Method and reference values in healthy controls. Muscle & Nerve, 12 (12), 993–1000. https://doi.org/10.1002/mus.880121207StålbergE. V.NoguésM. A.1989Automatic analysis of heart rate variation: I. Method and reference values in healthy controlsMuscle & Nerve12129931000https://doi.org/10.1002/mus.880121207Search in Google Scholar
Kano, Y., Yoshizawa, M., Sugita, N., Abe, M., Homma, N., Tanaka, A., Yamauchi, T., Miura, H., Shiraishi, Y., Yambe, T. (2014). Discrimination ability and reproducibility of a new index reflecting autonomic nervous function based on pulsatile amplitude of photoplethysmography. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1794–1800. https://doi.org/10.1109/EMBC.2014.6943957KanoY.YoshizawaM.SugitaN.AbeM.HommaN.TanakaA.YamauchiT.MiuraH.ShiraishiY.YambeT.2014Discrimination ability and reproducibility of a new index reflecting autonomic nervous function based on pulsatile amplitude of photoplethysmographyIn2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology SocietyIEEE17941800https://doi.org/10.1109/EMBC.2014.6943957Search in Google Scholar
Moreno, S., Quintero-Parra, A., Ochoa-Pertuz, C., Villarreal, R., Kuzmar, I. (2018). A signal processing method for respiratory rate estimation through photoplethysmography. International Journal of Signal Processing, Image Processing and Pattern Recognition, 11 (2), 1–10. http://dx.doi.org/10.14257/ijsip.2018.11.2.01MorenoS.Quintero-ParraA.Ochoa-PertuzC.VillarrealR.KuzmarI.2018A signal processing method for respiratory rate estimation through photoplethysmographyInternational Journal of Signal Processing, Image Processing and Pattern Recognition112110http://dx.doi.org/10.14257/ijsip.2018.11.2.01Search in Google Scholar
Chang, Y.-W., Hsiu, H., Yang, S.-H., Fang, W.-H., Tsai, H.-C. (2016). Characteristics of beat-to-beat photoplethysmography waveform indexes in subjects with metabolic syndrome. Microvascular Research, 106, 80–87. https://doi.org/10.1016/j.mvr.2016.04.001ChangY.-W.HsiuH.YangS.-H.FangW.-H.TsaiH.-C.2016Characteristics of beat-to-beat photoplethysmography waveform indexes in subjects with metabolic syndromeMicrovascular Research1068087https://doi.org/10.1016/j.mvr.2016.04.001Search in Google Scholar
Du, Y.-C., Stephanus, A. (2018). The feasibility study of photoplethysmography features for arteriovenous fistula stenosis detection in hemodialysis patients with statistical approach. In 2018 IEEE International Conference on Applied System Invention (ICASI). IEEE, 457–460. https://doi.org/10.1109/ICASI.2018.8394284DuY.-C.StephanusA.2018The feasibility study of photoplethysmography features for arteriovenous fistula stenosis detection in hemodialysis patients with statistical approachIn2018 IEEE International Conference on Applied System Invention (ICASI)IEEE457460https://doi.org/10.1109/ICASI.2018.8394284Search in Google Scholar
Smith, R. P., Argod, J., Pépin, J.-L., Lévy, P. A. (1999). Pulse transit time: An appraisal of potential clinical applications. Thorax, 54 (5), 452–457. https://thorax.bmj.com/content/54/5/452SmithR. P.ArgodJ.PépinJ.-L.LévyP. A.1999Pulse transit time: An appraisal of potential clinical applicationsThorax545452457https://thorax.bmj.com/content/54/5/452Search in Google Scholar
Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R., Nagle, H. T. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 37 (1), 85–98. https://doi.org/10.1109/10.43620FriesenG. M.JannettT. C.JadallahM. A.YatesS. L.QuintS. R.NagleH. T.1990A comparison of the noise sensitivity of nine QRS detection algorithmsIEEE Transactions on Biomedical Engineering3718598https://doi.org/10.1109/10.43620Search in Google Scholar
Middleton, P. M., Chan, G. S., O’Lone, E., Steel, E., Carroll, R., Celler, B. G., Lovell, N. H. (2009). Changes in left ventricular ejection time and pulse transit time derived from finger photoplethysmogram and electrocardiogram during moderate haemorrhage. Clinical Physiology and Functional Imaging, 29 (3), 163–169. https://doi.org/10.1111/j.1475-097X.2008.00843.xMiddletonP. M.ChanG. S.O’LoneE.SteelE.CarrollR.CellerB. G.LovellN. H.2009Changes in left ventricular ejection time and pulse transit time derived from finger photoplethysmogram and electrocardiogram during moderate haemorrhageClinical Physiology and Functional Imaging293163169https://doi.org/10.1111/j.1475-097X.2008.00843.xSearch in Google Scholar
Shouran, M., Elgamli, E. (2020). Design and implementation of Butterworth filter. International Journal of Innovative Research in Science, Engineering and Technology, 9 (9), 7975–7983.ShouranM.ElgamliE.2020Design and implementation of Butterworth filterInternational Journal of Innovative Research in Science, Engineering and Technology9979757983Search in Google Scholar
Bowman, F. (2012). Introduction to Bessel Functions. Courier Corporation, ISBN 9780486152998.BowmanF.2012Introduction to Bessel FunctionsCourier CorporationISBN 9780486152998.Search in Google Scholar
Lutovac, M. D., Tošić, D. V., Evans, B. L. (2000). Filter Design for Signal Processing using MATLAB and Mathematica. Prentice Hall, ISBN 9780201361308.LutovacM. D.TošićD. V.EvansB. L.2000Filter Design for Signal Processing using MATLAB and MathematicaPrentice HallISBN 9780201361308.Search in Google Scholar
Lin, L., Liu, T., Yuan, N., Xu, Z., Chen, H. (2021). Study on the influence of venturi on the cleaning performance of elliptical filter cartridge. Powder Technology, 377, 139–148. https://doi.org/10.1016/j.powtec.2020.08.097LinL.LiuT.YuanN.XuZ.ChenH.2021Study on the influence of venturi on the cleaning performance of elliptical filter cartridgePowder Technology377139148https://doi.org/10.1016/j.powtec.2020.08.097Search in Google Scholar
Abinaya, M., Prabhakaran, S., Jaisankar, N. (2014). Photoplethysmography on smart phone using Savitzky-Golay filter. International Journal of Scientific & Engineering Research, 5 (6).AbinayaM.PrabhakaranS.JaisankarN.2014Photoplethysmography on smart phone using Savitzky-Golay filterInternational Journal of Scientific & Engineering Research56Search in Google Scholar
Gonzalez, R. C., Woods, R. E. (2007). Digital Image Processing. Pearson, ISBN 978-0131687288.GonzalezR. C.WoodsR. E.2007Digital Image ProcessingPearsonISBN 978-0131687288.Search in Google Scholar
Lee, H.-W., Lee, J.-W., Jung, W.-G., Lee, G.-K. (2007). The periodic moving average filter for removing motion artifacts from PPG signals. International Journal of Control, Automation, and Systems, 5 (6), 701–706.LeeH.-W.LeeJ.-W.JungW.-G.LeeG.-K.2007The periodic moving average filter for removing motion artifacts from PPG signalsInternational Journal of Control, Automation, and Systems56701706Search in Google Scholar
Sahoo, A., Manimegalai, P., Thanushkodi, K. (2011). Wavelet based pulse rate and Blood pressure estimation system from ECG and PPG signals. In 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET). IEEE, 285–289. https://doi.org/10.1109/ICCCET.2011.5762486SahooA.ManimegalaiP.ThanushkodiK.2011Wavelet based pulse rate and Blood pressure estimation system from ECG and PPG signalsIn2011 International Conference on Computer, Communication and Electrical Technology (ICCCET)IEEE285289https://doi.org/10.1109/ICCCET.2011.5762486Search in Google Scholar
Lee, H.-K., Heo, I., Yang, S., Lee, K.-J. (2014). Discrete wavelet transform-based method for automatic evaluation of sleep-disordered breathing using photoplethysmography. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation. IEEE, 206–208. https://doi.org/10.1109/ISMS.2014.41LeeH.-K.HeoI.YangS.LeeK.-J.2014Discrete wavelet transform-based method for automatic evaluation of sleep-disordered breathing using photoplethysmographyIn2014 5th International Conference on Intelligent Systems, Modelling and SimulationIEEE206208https://doi.org/10.1109/ISMS.2014.41Search in Google Scholar
Wu, B.-F., Huang, P.-W., Tsou, T.-Y., Lin, T.-M., Chung, M.-L. (2017). Camera-based Heart Rate measurement using continuous wavelet transform. In 2017 International Conference on System Science and Engineering (ICSSE). IEEE, 7–11. https://doi.org/10.1109/ICSSE.2017.8030826WuB.-F.HuangP.-W.TsouT.-Y.LinT.-M.ChungM.-L.2017Camera-based Heart Rate measurement using continuous wavelet transformIn2017 International Conference on System Science and Engineering (ICSSE)IEEE711https://doi.org/10.1109/ICSSE.2017.8030826Search in Google Scholar
Zhong, Y., Pan, Y., Zhang, L., Cheng, K.-T. (2016). A wearable signal acquisition system for physiological signs including throat PPG. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 603–606. https://doi.org/10.1109/EMBC.2016.7590774ZhongY.PanY.ZhangL.ChengK.-T.2016A wearable signal acquisition system for physiological signs including throat PPGIn2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)IEEE603606https://doi.org/10.1109/EMBC.2016.7590774Search in Google Scholar
Pietilä, J., Mehrang, S., Tolonen, J., Helander, E., Jimison, H., Pavel, M., Korhonen, I. (2018). Evaluation of the accuracy and reliability for photoplethysmography based heart rate and beat-to-beat detection during daily activities. In IFMBE Proceedings, 65, 145–148. https://doi.org/10.1007/978-981-10-5122-7_37PietiläJ.MehrangS.TolonenJ.HelanderE.JimisonH.PavelM.KorhonenI.2018Evaluation of the accuracy and reliability for photoplethysmography based heart rate and beat-to-beat detection during daily activitiesInIFMBE Proceedings65145148https://doi.org/10.1007/978-981-10-5122-7_37Search in Google Scholar
Chatterjee, A., Prinz, A. (2018). Image analysis on fingertip video to obtain PPG. Biomedical and Pharmacology Journal, 11 (4), 1811–1827. https://dx.doi.org/10.13005/bpj/1554ChatterjeeA.PrinzA.2018Image analysis on fingertip video to obtain PPGBiomedical and Pharmacology Journal11418111827https://dx.doi.org/10.13005/bpj/1554Search in Google Scholar
Hosni, A., Atef, M. (2023). Remote real-time heart rate monitoring with recursive motion artifact removal using PPG signals from a smartphone camera. Multimedia Tools and Applications, 82 (13), 20571–20588. https://doi.org/10.1007/s11042-023-14399-wHosniA.AtefM.2023Remote real-time heart rate monitoring with recursive motion artifact removal using PPG signals from a smartphone cameraMultimedia Tools and Applications82132057120588https://doi.org/10.1007/s11042-023-14399-wSearch in Google Scholar
Ebrahimi, Z., Gosselin, B. (2023). Ultralow-power photoplethysmography (PPG) sensors: A methodological review. IEEE Sensors Journal, 23 (15), 16467–16480. https://doi.org/10.1109/JSEN.2023.3284818EbrahimiZ.GosselinB.2023Ultralow-power photoplethysmography (PPG) sensors: A methodological reviewIEEE Sensors Journal23151646716480https://doi.org/10.1109/JSEN.2023.3284818Search in Google Scholar
Chu, Y., Tang, K., Hsu, Y.-C., Huang, T., Wang, D., Li, W., Savitz, S. I., Jiang, X., Shams, S. (2023). Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: A deep learning framework. BMC Medical Informatics and Decision Making, 23 (1), 131. https://doi.org/10.1186/s12911-023-02215-2ChuY.TangK.HsuY.-C.HuangT.WangD.LiW.SavitzS. I.JiangX.ShamsS.2023Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: A deep learning frameworkBMC Medical Informatics and Decision Making231131https://doi.org/10.1186/s12911-023-02215-2Search in Google Scholar
Liu, X., Narayanswamy, G., Paruchuri, A., Zhang, X., Tang, J., Zhang, Y., Sengupta, R., Patel, S., Wang, Y., McDuff, D. (2023). rPPG-toolbox: Deep remote PPG toolbox. In Proceedings of the 37th International Conference on Neural Information Processing Systems. New York, US: Curran Associates Inc., 68485–68510.LiuX.NarayanswamyG.ParuchuriA.ZhangX.TangJ.ZhangY.SenguptaR.PatelS.WangY.McDuffD.2023rPPG-toolbox: Deep remote PPG toolboxInProceedings of the 37th International Conference on Neural Information Processing SystemsNew York, USCurran Associates Inc.6848568510Search in Google Scholar
Baltrusaitis, T., Zadeh, A., Lim, Y. C., Morency, L.-P. (2018). OpenFace 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition. IEEE. https://doi.org/10.1109/FG.2018.00019BaltrusaitisT.ZadehA.LimY. C.MorencyL.-P.2018OpenFace 2.0: Facial behavior analysis toolkitIn2018 13th IEEE International Conference on Automatic Face & Gesture RecognitionIEEEhttps://doi.org/10.1109/FG.2018.00019Search in Google Scholar
Huang, B., Chen, W., Lin, C.-L., Juang, C.-F., Wang, J. (2022). MLP-BP: A novel framework for cuffless blood pressure measurement with PPG and ECG signals based on MLP-Mixer neural networks. Biomedical Signal Processing and Control, 73, 103404. https://doi.org/10.1016/j.bspc.2021.103404HuangB.ChenW.LinC.-L.JuangC.-F.WangJ.2022MLP-BP: A novel framework for cuffless blood pressure measurement with PPG and ECG signals based on MLP-Mixer neural networksBiomedical Signal Processing and Control73103404https://doi.org/10.1016/j.bspc.2021.103404Search in Google Scholar
Peláez-Coca, M. D., Hernando, A., Lázaro, J., Gil, E. (2022). Impact of the PPG sampling rate in the pulse rate variability indices evaluating several fiducial points in different pulse waveforms. IEEE Journal of Biomedical and Health Informatics, 26 (2), 539–549. https://doi.org/10.1109/JBHI.2021.3099208Peláez-CocaM. D.HernandoA.LázaroJ.GilE.2022Impact of the PPG sampling rate in the pulse rate variability indices evaluating several fiducial points in different pulse waveformsIEEE Journal of Biomedical and Health Informatics262539549https://doi.org/10.1109/JBHI.2021.3099208Search in Google Scholar
Burma, J. S., Griffiths, J. K., Lapointe, A. P., Oni, I. K., Soroush, A., Carere, J., Smirl, J. D., Dunn, J. F. (2024). Heart rate variability and pulse rate variability: Do anatomical location and sampling rate matter? Sensors, 24 (7), 2048. https://doi.org/10.3390/s24072048BurmaJ. S.GriffithsJ. K.LapointeA. P.OniI. K.SoroushA.CarereJ.SmirlJ. D.DunnJ. F.2024Heart rate variability and pulse rate variability: Do anatomical location and sampling rate matter?Sensors2472048https://doi.org/10.3390/s24072048Search in Google Scholar
ADInstruments. Labchart 5 software adinstruments owners manual. https://www.adinstruments.com/products/labchartADInstrumentsLabchart 5 software adinstruments owners manualhttps://www.adinstruments.com/products/labchartSearch in Google Scholar
de Chazal, P., Heneghan, C., Sheridan, E., Reilly, R., Nolan, P., O'Malley, M. (2003). Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering, 50 (6), 686–696. https://doi.org/10.1109/TBME.2003.812203de ChazalP.HeneghanC.SheridanE.ReillyR.NolanP.O'MalleyM.2003Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoeaIEEE Transactions on Biomedical Engineering506686696https://doi.org/10.1109/TBME.2003.812203Search in Google Scholar
Liu, S., Ni, H., Zhong, Y., Yan, W., Wang, W. (2025). Adaptive weighted median filtering for time-varying graph signals. Signal, Image and Video Processing, 19 (1), 88. https://doi.org/10.1007/s11760-024-03610-6LiuS.NiH.ZhongY.YanW.WangW.2025Adaptive weighted median filtering for time-varying graph signalsSignal, Image and Video Processing19188https://doi.org/10.1007/s11760-024-03610-6Search in Google Scholar
Pan, J., Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32 (3), 230–236. https://doi.org/10.1109/TBME.1985.325532PanJ.TompkinsW. J.1985A real-time QRS detection algorithmIEEE Transactions on Biomedical Engineering323230236https://doi.org/10.1109/TBME.1985.325532Search in Google Scholar
Saritha, C., Sukanya, V., Narasimha Murthy, N. (2008). ECG signal analysis using wavelet transforms. Bulgarian Journal of Physics, 35 (1), 68–77.SarithaC.SukanyaV.Narasimha MurthyN.2008ECG signal analysis using wavelet transformsBulgarian Journal of Physics3516877Search in Google Scholar
Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93 (5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology1996Heart rate variability: Standards of measurement, physiological interpretation, and clinical useCirculation93510431065https://doi.org/10.1161/01.CIR.93.5.1043Search in Google Scholar
Florkowski, C. M. (2008). Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests. Clinical Biochemist Reviews, 29 (Suppl 1), S83–S87.FlorkowskiC. M.2008Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic testsClinical Biochemist Reviews29Suppl 1S83S87Search in Google Scholar
Chiang, M.-C., Yeh, T.-Y., Sung, J.-Y., Hsueh, H.-W., Kao, Y.-H., Hsueh, S.-J., Chang, K.-C., Feng, F.-P., Lin, Y.-H., Chao, C.-C., Hsieh, S.-T. (2021). Early changes of nerve integrity in preclinical carriers of hereditary transthyretin Ala117Ser amyloidosis with polyneuropathy. European Journal of Neurology, 28 (3), 982–991. https://doi.org/10.1111/ene.14698ChiangM.-C.YehT.-Y.SungJ.-Y.HsuehH.-W.KaoY.-H.HsuehS.-J.ChangK.-C.FengF.-P.LinY.-H.ChaoC.-C.HsiehS.-T.2021Early changes of nerve integrity in preclinical carriers of hereditary transthyretin Ala117Ser amyloidosis with polyneuropathyEuropean Journal of Neurology283982991https://doi.org/10.1111/ene.14698Search in Google Scholar
ADInstruments. (2014). PowerLab teaching series: Owner’s guide. Document no. U-ML818/OG-003F.ADInstruments2014PowerLab teaching series: Owner’s guideDocument no. U-ML818/OG-003F.Search in Google Scholar
Umar, L., Firmansyah, I., Setiadi, R. N. (2018). Design of pulse oximetry based on photoplethysmography and beat rate signal using DS-100 probe sensor for SpO2 measurement. In 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM). IEEE, 25–29. https://doi.org/10.1109/ISSIMM.2018.8727725UmarL.FirmansyahI.SetiadiR. N.2018Design of pulse oximetry based on photoplethysmography and beat rate signal using DS-100 probe sensor for SpO2 measurementIn2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM)IEEE2529https://doi.org/10.1109/ISSIMM.2018.8727725Search in Google Scholar
Sáringer, S., Kaposvári, P., Benyhe, A. (2024). Visual linguistic statistical learning is traceable through neural entrainment. Psychophysiology, 61 (8), e14575. https://doi.org/10.1111/psyp.14575SáringerS.KaposváriP.BenyheA.2024Visual linguistic statistical learning is traceable through neural entrainmentPsychophysiology618e14575https://doi.org/10.1111/psyp.14575Search in Google Scholar