This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cao, H., Zhou, K., Chen, X., Zhang, X. (2017). Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. The International Journal of Advanced Manufacturing Technology, 92 (9), 4387–4397. https://doi.org/10.1007/s00170-017-0476-xCaoH.ZhouK.ChenX.ZhangX.2017Early chatter detection in end milling based on multi-feature fusion and 3σ criterionThe International Journal of Advanced Manufacturing Technology92943874397https://doi.org/10.1007/s00170-017-0476-xSearch in Google Scholar
Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., Riera-Guasp, M. (2015). Rotor-bar breakage mechanism and prognosis in an induction motor. IEEE Transactions on Industrial Electronics, 62 (3), 1814–1825. https://doi.org/10.1109/TIE.2014.2336604Climente-AlarconV.Antonino-DaviuJ. A.StrangasE. G.Riera-GuaspM.2015Rotor-bar breakage mechanism and prognosis in an induction motorIEEE Transactions on Industrial Electronics62318141825https://doi.org/10.1109/TIE.2014.2336604Search in Google Scholar
Zhang, J., Xu, Z., Wang, J., Zhao, J., Din, Z., Cheng, M. (2021). Detection and discrimination of incipient stator faults for inverter-fed permanent magnet synchronous machines. IEEE Transactions on Industrial Electronics, 68 (8), 7505–7515. https://doi.org/10.1109/TIE.2020.3009563ZhangJ.XuZ.WangJ.ZhaoJ.DinZ.ChengM.2021Detection and discrimination of incipient stator faults for inverter-fed permanent magnet synchronous machinesIEEE Transactions on Industrial Electronics68875057515https://doi.org/10.1109/TIE.2020.3009563Search in Google Scholar
Rojas, G. A., Quiroga Rubiano, E. L., Caratar Chaux, J. F., Pinedo Jaramillo, C. R., Garcia Melo, J. I. (2017). Supervisory system for fault detection and diagnosis in drinking water treatment plants using fuzzy engine. IEEE Latin America Transactions, 15 (11), 2071–2076. https://doi.org/10.1109/TLA.2017.8070410RojasG. A.Quiroga RubianoE. L.Caratar ChauxJ. F.Pinedo JaramilloC. R.Garcia MeloJ. I.2017Supervisory system for fault detection and diagnosis in drinking water treatment plants using fuzzy engineIEEE Latin America Transactions151120712076https://doi.org/10.1109/TLA.2017.8070410Search in Google Scholar
Xu, X., Yan, X., Sheng, C., Yuan, C., Xu, D., Yang, J. (2020). A belief rule-based expert system for fault diagnosis of marine diesel engines. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50 (2), 656–672. https://doi.org/10.1109/TSMC.2017.2759026XuX.YanX.ShengC.YuanC.XuD.YangJ.2020A belief rule-based expert system for fault diagnosis of marine diesel enginesIEEE Transactions on Systems, Man, and Cybernetics: Systems502656672https://doi.org/10.1109/TSMC.2017.2759026Search in Google Scholar
De Angelo, C. H., Bossio, G. R., Giaccone, S. J., Valla, M. I., Solsona, J. A., Garcia, G. O. (2009). Online model-based stator-fault detection and identification in induction motors. IEEE Transactions on Industrial Electronics, 56 (11), 4671–4680. https://doi.org/10.1109/TIE.2009.2012468De AngeloC. H.BossioG. R.GiacconeS. J.VallaM. I.SolsonaJ. A.GarciaG. O.2009Online model-based stator-fault detection and identification in induction motorsIEEE Transactions on Industrial Electronics561146714680https://doi.org/10.1109/TIE.2009.2012468Search in Google Scholar
Wang, Q., Jin, T., Mohamed, M. A., Chen, T. (2020). A minimum hitting set algorithm with prejudging mechanism for model-based fault diagnosis in distribution networks. IEEE Transactions on Instrumentation and Measurement, 69 (7), 4702–4711. https://doi.org/10.1109/TIM.2019.2951866WangQ.JinT.MohamedM. A.ChenT.2020A minimum hitting set algorithm with prejudging mechanism for model-based fault diagnosis in distribution networksIEEE Transactions on Instrumentation and Measurement69747024711https://doi.org/10.1109/TIM.2019.2951866Search in Google Scholar
Wu, P., Ferrari, R. M. G., Liu, Y., van Wingerden, J.-W. (2021). Data-driven incipient fault detection via canonical variate dissimilarity and mixed kernel principal component analysis. IEEE Transactions on Industrial Informatics, 17 (8), 5380–5390. https://doi.org/10.1109/TII.2020.3029900WuP.FerrariR. M. G.LiuY.van WingerdenJ.-W.2021Data-driven incipient fault detection via canonical variate dissimilarity and mixed kernel principal component analysisIEEE Transactions on Industrial Informatics17853805390https://doi.org/10.1109/TII.2020.3029900Search in Google Scholar
Wang, B., Lei, Y., Li, N., Li, N. (2020). A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Transactions on Reliability, 69 (1), 401–412. https://doi.org/10.1109/TR.2018.2882682WangB.LeiY.LiN.LiN.2020A hybrid prognostics approach for estimating remaining useful life of rolling element bearingsIEEE Transactions on Reliability691401412https://doi.org/10.1109/TR.2018.2882682Search in Google Scholar
Mao, W., Chen, J., Liang, X., Zhang, X. (2020). A new online detection approach for rolling bearing incipient fault via self-adaptive deep feature matching. IEEE Transactions on Instrumentation and Measurement, 69 (2), 443–456. https://doi.org/10.1109/TIM.2019.2903699MaoW.ChenJ.LiangX.ZhangX.2020A new online detection approach for rolling bearing incipient fault via self-adaptive deep feature matchingIEEE Transactions on Instrumentation and Measurement692443456https://doi.org/10.1109/TIM.2019.2903699Search in Google Scholar
Ni, X., Yang, D., Zhang, H., Qu, F., Qin, J. (2023). Time-series transfer learning: An early stage imbalance fault detection method based on feature enhancement and improved support vector data description. IEEE Transactions on Industrial Electronics, 70 (8), 8488–8498. https://doi.org/10.1109/TIE.2022.3229351NiX.YangD.ZhangH.QuF.QinJ.2023Time-series transfer learning: An early stage imbalance fault detection method based on feature enhancement and improved support vector data descriptionIEEE Transactions on Industrial Electronics70884888498https://doi.org/10.1109/TIE.2022.3229351Search in Google Scholar