Accesso libero

Multimodal Brain Tumor Classification using Capsule Convolution Neural Network with Differential Evolution Optimization Process

, ,  e   
24 dic 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Miller, K. D., Ostrom, Q. T., Kruchko, C., Patil, N., Tihan, T., Cioffi, G., Fuchs, H. E., Waite, K. A., Jemal, A., Siegel, R. L., Barnholtz-Sloan, J. S. (2021). Brain and other central nervous system tumor statistics, 2021. CA: A Cancer Journal For Clinicians, 71 (5), 381-406. https://doi.org/10.3322/caac.21693 Search in Google Scholar

Amin, J., Sharif, M., Raza, M., Saba, T., Anjum, M. A. (2019). Brain tumor detection using statistical and machine learning method. Computer Methods and Programs in Biomedicine, 177 (3), 69-79. https://doi.org/10.1016/j.cmpb.2019.05.015 Search in Google Scholar

Ibrahim, I. M., Abdulazeez, A. M. (2021). The role of machine learning algorithms for diagnosing diseases. Journal of Application Science and Technology Trends, 2 (1), 10-19. https://doi.org/10.38094/jastt20179 Search in Google Scholar

Jacily Jemila, S., Jayasankar, T. (2011). An automated cancer recognition system for MRI images using neuro fuzzy logic. International Journal of Computer Information Systems, 2 (5), 18-22. ISSN 2229-5208. Search in Google Scholar

Rashid, M., Khan, M. A., Alhaisoni, M., Wang, S.-H., Naqvi, S. R., Rehman, A., Saba, T. (2020). A sustainable deep learning framework for object recognition using multi-layers deep features fusion and selection. Sustainability, 12 (12), 5037. https://doi.org/10.3390/su12125037 Search in Google Scholar

Agrawal, T., Choudhary, P., Shankar, A., Singh, P., Diwakar, M. (2024). MultiFeNet: Multi‐scale feature scaling in deep neural network for the brain tumour classification in MRI images. International Journal of Imaging Systems and Technology, 34 (1), e22956. https://doi.org/10.1002/ima.22956 Search in Google Scholar

Ranjbarzadeh, R., Zarbakhsh, P., Caputo, A., Tirkolaee, E. B., Bendechache, M. (2024). Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm. Computers in Biology and Medicine, 168, 107723. https://doi.org/10.1016/j.compbiomed.2023.107723 Search in Google Scholar

Kurdi, S. Z., Ali, M. H., Jaber, M. M., Saba, T., Rehman, A., Damaševičius, R. (2023). Brain tumor classification using meta-heuristic optimized convolutional neural networks. Journal of Personalized Medicine, 13 (2), 181. https://doi.org/10.3390/jpm13020181 Search in Google Scholar

Shajin, F. H., Salini, P., Rajesh, P., Nagoji Rao, V. K. (2023). Efficient framework for brain tumour classification using hierarchical deep learning neural network classifier. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11 (3), 750-757. https://doi.org/10.1080/21681163.2022.2111719 Search in Google Scholar

Rahman, T., Islam, M. S. (2023). MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors, 26, 100694. https://doi.org/10.1016/j.measen.2023.100694 Search in Google Scholar

Tazin, T., Sarker, S., Gupta, P., Ayaz, F. I., Islam, S., Khan, M. M., Bourouis, S., Idris, S. A., Alshazly, H. (2023). Retracted: A robust and novel approach for brain tumor classification using convolutional neural network. Computational Intelligence and Neuroscience, 2023, 9760861. https://doi.org/10.1155/2023/9760861 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Ingegneria, Elettrotecnica, Ingegneria dell'automazione, metrologia e collaudo