Accesso libero

Reactive Power and Energy Instrument’s Performance in Non-Sinusoidal Conditions Regarding Different Power Theories



It is important to conduct the examination of reactive power and energy instruments in normal operating conditions, due to their place in the regulated trade of electrical energy. The challenge arises when the normal operating conditions encompass non-sinusoidal voltages and currents, for two main reasons: the fact that the term reactive power/energy is not unambiguously defined in case of harmonically polluted environment and the fact that the measurement algorithm implemented in the meter is usually not explicitly presented by the producer. Different algorithms provide the same result in case of sinusoidal signals, while in case of harmonics the instrument’s performance may vary significantly, when different power theories are adopted. In the paper, a commercially available reactive energy electricity meter is tested with harmonically distorted voltage and current signals, and an analysis of its output is performed from the perspective of the implemented measuring algorithm, which is not known a priori. The tests encompass alteration of different waveform parameters and the instrument’s output is analyzed from the perspective of several reactive power theories. The conclusion of the analysis results in the meter’s performance feature illustration in correlation with different harmonic parameters and different reference conditions.

Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing