Accesso libero

Integrated Sensing and Computing for Wearable Human Activity Recognition with MEMS IMU and BLE Network

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Zhang, F. (2020). Human-computer interactive gesture feature capture and recognition in virtual reality. Ergonomics in Design: The Quarterly of Human Factors Applications, 29 (2), 9-25. https://doi.org/10.1177%2F1064804620924133 Search in Google Scholar

[2] Wang, Y., Chen, M., Wang, X., Chan, R., Li, W. (2018). IoT for next generation racket sports training. IEEE Internet of Things Journal, 5 (6), 4558-4566. https://doi.org/10.1109/JIOT.2018.283734710.1109/JIOT.2018.2837347 Search in Google Scholar

[3] Wang, L., Sun, Y., Li, Q., Liu, T., Yi, J. (2020). Two shank-mounted IMUs-based gait analysis and classification for neurological disease patients. IEEE Robotics and Automation Letters, 5 (2), 1970-1976. https://doi.org/10.1109/LRA.2020.297065610.1109/LRA.2020.2970656 Search in Google Scholar

[4] Debes, C., Merentitis, A., Sukhanov, S., Niessen, M., Fangiadakis, N., Bauer, A. (2016). Monitoring activities of daily living in smart homes: Understanding human behavior. IEEE Signal Processing Magazine, 33 (2), 81-94. https://doi.org/10.1109/MSP.2015.250388110.1109/MSP.2015.2503881 Search in Google Scholar

[5] Wang, J., Chen, Y., Hao, S., Peng X.H., Hu, L.S. (2019). Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119, 3-11. https://doi.org/10.1016/j.patrec.2018.02.01010.1016/j.patrec.2018.02.010 Search in Google Scholar

[6] Yang, D., Huang, J., Tu, X., Ding, G.Z., Shen, T., Xiao, X.L. (2019). A wearable activity recognition device using Air-pressure and IMU sensors. IEEE Access, 7, 6611-6621. https://doi.org/10.1109/ACCESS.2018.289000410.1109/ACCESS.2018.2890004 Search in Google Scholar

[7] Oniga, S., József, S. (2015). Optimal recognition method of human activities using artificial neural networks. Measurement Science Review, 15 (6), 323-327. https://doi.org/10.1515/msr-2015-004410.1515/msr-2015-0044 Search in Google Scholar

[8] Yan, H., Zhang, Y., Wang, Y.J., Xu, K.L. (2020). WiAct: A passive WIFI-based human activity recognition system. IEEE Sensors Journal, 20 (1), 296-305. https://doi.org/10.1109/JSEN.2019.293824510.1109/JSEN.2019.2938245 Search in Google Scholar

[9] Han, J.S., Ding, H., Qian, C., Xi, W., Wang, Z., Jiang, Z.P., Shangguan, L.F., Zhao, J.Z. (2016). CBID: A customer behavior identification system using passive tags. IEEE/ACM Transactions on Networking, 24 (5), 2885-2898. https://doi.org/10.1109/TNET.2015.250110310.1109/TNET.2015.2501103 Search in Google Scholar

[10] Rahaman, H., Dyo, V. (2021). Tracking human motion direction with commodity wireless networks. IEEE Sensors Journal, 21 (20), 23344-23351. https://doi.org/10.1109/JSEN.2021.311113210.1109/JSEN.2021.3111132 Search in Google Scholar

[11] Mekruksavanich, S., Hnoohom, N., Jitpattanakul, A. (2018). Smartwatch-based sitting detection with human activity recognition for office workers syndrome. In 2018 International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering. IEEE, 160-164. https://doi.org/10.1109/ECTI-NCON.2018.837830210.1109/ECTI-NCON.2018.8378302 Search in Google Scholar

[12] Mekruksavanich, S, Jitpattanakul, A. (2020). Smartwatch-based human activity recognition using hybrid LSTM network. In 2020 IEEE Sensors Conference. IEEE, 1-4. https://doi.org/10.1109/SENSORS47125.2020.927863010.1109/SENSORS47125.2020.9278630 Search in Google Scholar

[13] Li, Y., Zhao, K., Duan, M.C., Shi, W., Lin, L.L., Cao, X.Y., Liu, Y., Zhao, J.Z. (2020). Control your home with a smartwatch. IEEE Access, 8, 131601-131613. https://doi.org/10.1109/ACCESS.2020.300732810.1109/ACCESS.2020.3007328 Search in Google Scholar

[14] Guo, J.Q., Zhou, X., Sun, Y.C., Ping, G., Zhao, G.X., Li, Z.R. (2016). Smartphone-based patients’ activity recognition by using a self-learning scheme for medical monitoring. Journal of Medical System, 40 (6), 140. https://doi.org/10.1007/s10916-016-0497-210.1007/s10916-016-0497-227106584 Search in Google Scholar

[15] Ramanujam, E., Perumal, T., Padmavathi, S. (2021). Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal, 21 (12), 13029-13040. https://doi.org/10.1109/JSEN.2021.306992710.1109/JSEN.2021.3069927 Search in Google Scholar

[16] Masoud, M.Z., Jaradat, Y., Manaarah, A., Jannoud, I. (2019). Sensors of smart devices in the internet of everything (IoE) era: Big opportunities and massive doubts. Journal of Sensors, 2019, 6514520. https://doi.org/10.1155/2019/651452010.1155/2019/6514520 Search in Google Scholar

[17] Irene, S., Shwetha, N.M., Haribabu, P., Pitchiah, R. (2015). Development of ZigBee triaxial accelerometer based human activity recognition system. In IEEE International Conference on Computer and Information Technology. IEEE, 1460-1466. https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.35710.1109/CIT/IUCC/DASC/PICOM.2015.357 Search in Google Scholar

[18] Yen, T., Liao, J.X., Huang, Y.K. (2020). Human daily activity recognition performed using wearable inertial sensors combined with deep learning algorithms. IEEE Access, 8, 174105-174114. https://doi.org/10.1109/ACCESS.2020.302593810.1109/ACCESS.2020.3025938 Search in Google Scholar

[19] Santoyo-Ramón, J.A., Casilari, E., Cano-García, J.M. (2018). Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection with supervised learning. Sensors, 18 (4), 1155. https://doi.org/10.3390/s1804115510.3390/s18041155594857229642638 Search in Google Scholar

[20] Li, H., He, X., Chen, X., Fang, Y.Y., Fang, Q. (2019). Wi-motion: A robust human activity recognition using WIFI signals. IEEE Access, 7, 153287-153299. https://doi.org/10.1109/ACCESS.2019.294810210.1109/ACCESS.2019.2948102 Search in Google Scholar

[21] Mellal, L., Laghrouche, M., Bui, H.T. (2017). Field programmable gate array (FPGA) respiratory monitoring system using a flow microsensor and an accelerometer. Measurement Science Review, 17 (2), 61-67. https://doi.org/10.1515/msr-2017-000810.1515/msr-2017-0008 Search in Google Scholar

[22] Hsu, Y.L., Yang, S.C., Chang, C.H., Lai, H.C. (2018). Human daily and sport activity recognition using a wearable inertial sensor network. IEEE Access, 6, 31715-31728. https://doi.org/10.1109/ACCESS.2018.283976610.1109/ACCESS.2018.2839766 Search in Google Scholar

[23] Tian, Y.M., Zhang, J., Li, L.P., Liu, Z.J. (2021). A novel sensor-based human activity recognition method based on hybrid feature selection and combinational optimization. IEEE Access, 9, 107235-107249. https://doi.org/10.1109/ACCESS.2021.310058010.1109/ACCESS.2021.3100580 Search in Google Scholar

[24] Hassan, M.M., Uddin, M.Z., Mohamed, A., Almogren, A. (2018). A robust human activity recognition system using smartphone sensors and deep learning. Future Generation Computer Systems, 81, 307-313. https://doi.org/10.1016/j.future.2017.11.02910.1016/j.future.2017.11.029 Search in Google Scholar

[25] Janarthanan, R., Doss, S., Baskar, S. (2020). Optimized unsupervised deep learning assisted reconstructed coder in the on-nodule wearable sensor for human activity recognition. Measurement, 164 (3), 108050. https://doi.org/10.1016/j.measurement.2020.10805010.1016/j.measurement.2020.108050 Search in Google Scholar

[26] Iloga, S., Bordat, A., Kernec, J.L., Romain, O. (2021). Human activity recognition based on acceleration data from smartphones using HMMs. IEEE Access, 9, 139336-139351. https://doi.org/10.1109/ACCESS.2021.311733610.1109/ACCESS.2021.3117336 Search in Google Scholar

[27] Coelho, Y.L., Santos, F., Frizera-Neto, A., Bastos-Filho, T.F. (2021). Lightweight framework for human activity recognition on wearable devices. IEEE Sensors Journal, 21 (21), 24471-24481. https://doi.org/10.1109/JSEN.2021.311390810.1109/JSEN.2021.3113908 Search in Google Scholar

[28] Ando, B., Baglio, S., Lombardo, C.O., Marletta, V. (2016). A multisensor data-fusion approach for ADL and fall classification. IEEE Transactions on Instrumentation and Measurement, 65 (9), 1960-1967. https://doi.org/10.1109/TIM.2016.255267810.1109/TIM.2016.2552678 Search in Google Scholar

[29] Webber, M., Rojas, R.F. (2021). Human activity recognition with accelerometer and gyroscope: A data fusion approach. IEEE Sensors Journal, 21 (15), 16979-16989. https://doi.org/10.1109/JSEN.2021.307988310.1109/JSEN.2021.3079883 Search in Google Scholar

[30] Kok, M., Hol, J.D., Schon, T.B. (2017). Using inertial sensors for position and orientation Estimation. Foundations and Trends in Signal Processing, 11 (1-2), 1-153. http://dx.doi.org/10.1561/200000009410.1561/2000000094 Search in Google Scholar

[31] Melgani F., Bazi, Y. (2008) Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Transactions on Information Technology in Biomedicine, 12 (5), 667-677. https://doi.org/10.1109/TITB.2008.92314710.1109/TITB.2008.92314718779082 Search in Google Scholar

eISSN:
1335-8871
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing