Accesso libero

3D Printed Pressure Sensor Based on Surface Acoustic Wave Resonator

, , , ,  e   
24 giu 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

[1] Faller, L.M., Granig, W., Krivec, M., Abram, A., Zangl, H. (2018). Rapid prototyping of force/pressure sensors using 3D- and inkjet-printing. Journal of Micromechanics and Microengineering, 28, 104002.10.1088/1361-6439/aaadf4 Search in Google Scholar

[2] Davidovikj, D., Scheepers, P.H., van der Zant, H.S.J., Steeneken, P.G. (2017). Static capacitive pressure sensing using a single graphene drum. ACS Applied Materials & Interfaces, 9 (49), 43205-43210.10.1021/acsami.7b1748729164848 Search in Google Scholar

[3] San, H., Song, Z., Wang, X., Zhao, Y. (2012). Piezoresistive pressure sensors for harsh environments. Optics and Precision Engineering, 20 (3), 550-555. Search in Google Scholar

[4] Gajula, D.R., Jahangir, I., Koley, G. (2018). High temperature AlGaN/GaN membrane based pressure sensors. Micromachines, 9 (5), 207.10.3390/mi9050207618771230424140 Search in Google Scholar

[5] Shtyrkov, O.V., Yushkov, V.A. (2016). A dual absolute pressure measuring transducer. Instruments and Experimental Techniques, 59, 139-141.10.1134/S0020441216010140 Search in Google Scholar

[6] Murawski, K. (2015). New vision sensor to measure gas pressure. Measurement Science Review, 15 (3), 132-138.10.1515/msr-2015-0020 Search in Google Scholar

[7] Hu, B., Li, Z., Wan, Y., Li, M., San, H. (2021). Gas pressure measurement using micro-corona-discharging effect in surface acoustic wave resonators. Results in Physics, 25, 104221.10.1016/j.rinp.2021.104221 Search in Google Scholar

[8] Nicolay, P., Elmazria, O., Sarry, F., Bouvot, L., Marche, N., Kambara, H. (2008). Innovative surface acoustic wave sensor for accurate measurement of subatmospheric pressure. Applied Physics Letters, 92, 141909.10.1063/1.2908038 Search in Google Scholar

[9] Oh, H., Lee, K., Eun, K., Choa, S., Yang, S. (2012). Development of a high-sensitivity strain measurement system based on a SH SAW sensor. Journal of Micromechanics and Microengeering, 22, 025002.10.1088/0960-1317/22/2/025002 Search in Google Scholar

[10] Dai, X., Fang, L., Zhang, C., Sun, H. (2020). An impedance-loaded orthogonal frequency-coded SAW sensor for passive wireless sensor networks. Sensors, 20 (7), 1876.10.3390/s20071876718107432231025 Search in Google Scholar

[11] Royer, D., Dieulesaint, E. (2000). Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications. Spinger, 336-342. ISBN 978-3540659310. Search in Google Scholar

[12] Hu, B., Zhang, S., Zhang, H., Lv, W., Zhang, C., Lv, X., San, H. (2017). Fabrications of L-Band LiNbO3- based SAW resonators for aerospace applications. Micromachines, 10 (6), 349. Search in Google Scholar

[13] Zhou, P., Chen, C., Wang, X., Hu, B., San, H. (2018). 2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing. Sensors and Actuators A: Physical, 271 (1), 389-397.10.1016/j.sna.2017.12.007 Search in Google Scholar

[14] Xie, L., Wang, T., Xing, J., Zhu, X. (2018). An embedded surface acoustic wave pressure sensor for monitoring civil engineering structures. IEEE Sensors Journal, 18 (13), 5232-5237.10.1109/JSEN.2018.2833155 Search in Google Scholar

[15] Dixon, B., Kalinin, V., Beckley, J., Lohr, R. (2006). A second generation in-car tire pressure monitoring system based on wireless passive SAW sensors. In IEEE International Frequency Control Symposium. IEEE.10.1109/FREQ.2006.275414 Search in Google Scholar

[16] Tanski, W.J. (1978). A configuration and circuit analysis for one-port SAW resonators. Journal of Applied Physics, 49 (4), 2559.10.1063/1.325064 Search in Google Scholar

[17] Jasek, K., Pasternak, M. (2015). The influence of external pressure on resonant frequency of SAW resonator. Acta Physica Polonica A, 127 (6), 1601-1605.10.12693/APhysPolA.127.1601 Search in Google Scholar

[18] Hara, B., Mitsui, M., Sano, K., Nagasawa, S., Kuwano, H. (2012). Experimental study of highly sensitive sensor using a surface acoustic wave resonator for wireless strain detection. Japanese Journal of Applied Physics, 51, 07GC23.10.7567/JJAP.51.07GC23 Search in Google Scholar

[19] Hofer, M., Finger, N., Kovacs, G., Schoberl, J., Langer, U., Lerch, R. (2002). Finite element simulation of bulk- and surface acoustic wave (SAW) interaction in SAW devices. In IEEE Symposium (IUS) Ultrasonics. IEEE, 53-56.10.1109/ULTSYM.2002.1193351 Search in Google Scholar

[20] Kannan, T. (2006). Finite element analysis of surface acoustic wave resonators. M.S. Thesis, Department of Electrical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Search in Google Scholar

[21] Hashimoto, K.-Y. (2000). Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation. Springer, ISBN 978-3-540-67232-6. Search in Google Scholar

[22] Haydl, W.H., Hiesinger, P., Smith, R.S., Dischler, B., Heber, K. (1976). Design of quartz and lithium niobate SAW resonators using aluminum metallization. In 30th Annual Symposium on Frequency Control. IEEE.10.1109/FREQ.1976.201337 Search in Google Scholar

[23] Hoummady, M., Hauden, D. (1994). Acoustic wave thermal sensitivity: Temperature sensors and temperature compensation in microsensors. Sensors and Actuators A: Physical, 44 (3), 177-182.10.1016/0924-4247(94)00802-7 Search in Google Scholar

[24] Pandian, A., Belavek, C. (2016). A review of recent trends and challenges in 3D printing. In Proceedings of the 2016 ASEE North Central Section Conference. American Society for Engineering Education. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Ingegneria, Elettrotecnica, Ingegneria dell'automazione, metrologia e collaudo