This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Singh, N., Singh, A., Ankur, N., Kumar, P., Kumar, M., Singh, T., Reviewing the properties of recycled concrete aggregates and iron slag in concrete, J. Build. Eng., 2022, 60: 105150. 10.1016/j.jobe.2022.105150SinghN.SinghA.AnkurN.KumarP.KumarM.SinghT.Reviewing the properties of recycled concrete aggregates and iron slag in concreteJ. Build. Eng.20226010515010.1016/j.jobe.2022.105150Open DOI
Singh, G.V.P.B., Subramaniam, K.V.L., Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash, Cem. Concr. Compos., 2019, 95: 10–18. 10.1016/j.cemconcomp.2018.10.010Singh,G.V.P.B.SubramaniamK.V.L.Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ashCem. Concr. Compos.201995101810.1016/j.cemconcomp.2018.10.010Open DOI
Thakur, M., Bawa, S., Self-compacting geopolymer concrete: a review, Mater. Today Proc., 2022, 59: 1683–1693. 10.1016/j.matpr.2022.03.400ThakurM.BawaS.Self-compacting geopolymer concrete: a reviewMater. Today Proc.2022591683169310.1016/j.matpr.2022.03.400Open DOI
Farooq, M., Krishna, A., Banthia, N., Highly ductile fiber reinforced geopolymers under tensile impact, Cem. Concr. Compos., 2022, 126: 104374. 10.1016/j.cemconcomp.2021.104374FarooqM.KrishnaA.BanthiaN.Highly ductile fiber reinforced geopolymers under tensile impactCem. Concr. Compos.202212610437410.1016/j.cemconcomp.2021.104374Open DOI
Sharma, A., Basumatary, N., Singh, P., Kapoor, K., -Singh, S.P., Potential of geopolymer concrete as substitution for conventional concrete: A review, Mater. Today Proc., 2022, 57: 1539–1545. 10.1016/j.matpr.2021.12.159SharmaA.BasumataryN.SinghP.KapoorK.SinghS.P.Potential of geopolymer concrete as substitution for conventional concrete: A reviewMater. Today Proc.2022571539154510.1016/j.matpr.2021.12.159Open DOI
Pasupathy, K., Berndt, M., Sanjayan, J., Rajeev, P., Cheema, D.S., Durability of low calcium fly ash based geopolymer concrete culvert in a saline environment, Cem. Concr. Res., 2017, 100: 297–310. 10.1016/j.cemconres.2017.07.010PasupathyK.BerndtM.SanjayanJ.RajeevP.CheemaD.S.Durability of low calcium fly ash based geopolymer concrete culvert in a saline environmentCem. Concr. Res.201710029731010.1016/j.cemconres.2017.07.010Open DOI
Li, L., Wei, Y., Li, Z., Farooqi, M.U., Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer, J. Clean. Prod., 2022, 354: 131629. 10.1016/j.jclepro.2022.131629LiL.WeiY.LiZ.FarooqiM.U.Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymerJ. Clean. Prod.202235413162910.1016/j.jclepro.2022.131629Open DOI
Abdellatief, M., Elrahman, M.A., Abadel, A.A., Wasim, M., Tahwia, A., Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment, J. Build. Eng., 2023, 79: 107835. 10.1016/j.jobe.2023.107835AbdellatiefM.ElrahmanM.A.AbadelA.A.WasimM.TahwiaA.Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessmentJ. Build. Eng.20237910783510.1016/j.jobe.2023.107835Open DOI
Lee, W.H., Wang, J.H., Ding, Y.C., Cheng, T.W., A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete, Constr. Build. Mater., 2019, 211: 807–813. 10.1016/j.conbuildmat.2019.03.291LeeW.H.WangJ.H.DingY.C.ChengT.W.A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concreteConstr. Build. Mater.201921180781310.1016/j.conbuildmat.2019.03.291Open DOI
Saranya, P., Nagarajan, P., Shashikala, A.P., Performance studies on steel fiber–reinforced GGBS-dolomite geopolymer concrete, J. Mater. Civ. Eng., 2021, 33(2): 04020447. 10.1061/(asce)mt.1943-5533.0003530SaranyaP.NagarajanP.ShashikalaA.P.Performance studies on steel fiber–reinforced GGBS-dolomite geopolymer concreteJ. Mater. Civ. Eng.20213320402044710.1061/(asce)mt.1943-5533.0003530Open DOI
Abadel, A.A., Albidah, A.S., Altheeb, A.H., Alrshoudi, F.A., Abbas, H., Al-Salloum, Y.A., Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer, Adv. Concr. Constr., 2021, 11: 127–140AbadelA.A.AlbidahA.S.AltheebA.H.AlrshoudiF.A.AbbasH.Al-SalloumY.A.Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymerAdv. Concr. Constr.202111127140Search in Google Scholar
Abadel, A.A., The performance of CFRP-strengthened heat-damaged metakaolin-based geopolymer concrete cylinders containing reclaimed asphalt aggregate, Mater. Sci. Pol., 2024, 42: 125–142AbadelA.A.The performance of CFRP-strengthened heat-damaged metakaolin-based geopolymer concrete cylinders containing reclaimed asphalt aggregateMater. Sci. Pol.202442125142Search in Google Scholar
Alharbi, Y.R., Albidah, A., Synthesis of geopolymer mortar incorporating date palm ash, Constr. Build. Mater., 2024, 449: 138512. 10.1016/j.conbuildmat.2024.138512AlharbiY.R.AlbidahA.Synthesis of geopolymer mortar incorporating date palm ashConstr. Build. Mater.202444913851210.1016/j.conbuildmat.2024.138512Open DOI
Talha Junaid, M., Kayali, O., Khennane, A., Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures, Mater. Struct., 2017, 50: 50. 10.1617/s11527-016-0877-6Talha JunaidM.KayaliO.KhennaneA.Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperaturesMater. Struct.2017505010.1617/s11527-016-0877-6Open DOI
Davidovits, J., Geopolymer cement, a review, Geopolymer Institute Technical Pap., 2013, 21: 1–11DavidovitsJ.Geopolymer cement, a reviewGeopolymer Institute Technical Pap.201321111Search in Google Scholar
Raza, A., Ahmed, M., Azab, M., Arshad, M., Effectiveness of using nanoparticles in green composites: A scientometric analysis of fresh, mechanical, durability, and microstructural features, Constr. Build. Mater., 2023, 402: 133077. 10.1016/j.conbuildmat.2023.133077RazaA.AhmedM.AzabM.ArshadM.Effectiveness of using nanoparticles in green composites: A scientometric analysis of fresh, mechanical, durability, and microstructural featuresConstr. Build. Mater.202340213307710.1016/j.conbuildmat.2023.133077Open DOI
Provis, J.L., Geopolymers and other alkali activated materials: why, how, and what?, Mater. Struct., 2013, 47: 11–25. 10.1617/s11527-013-0211-5ProvisJ.L.Geopolymers and other alkali activated materials: why, how, and what?Mater. Struct.201347112510.1617/s11527-013-0211-5Open DOI
Zheng, Y., Zhang, W., Zheng, L., Zheng, J., Mechanical properties of steel fiber-reinforced geopolymer concrete after high temperature exposure, Constr. Build. Mater., 2024, 439: 137394ZhengY.ZhangW.ZhengL.ZhengJ.Mechanical properties of steel fiber-reinforced geopolymer concrete after high temperature exposureConstr. Build. Mater.2024439137394Search in Google Scholar
Abdullah, A.F., Abdul-Rahman, M.B.A.D., Al-Attar, A.A., Investigate the mechanical characteristics and microstructure of fibrous-geopolymer concrete exposure to high temperatures, J. Rehabil. Civ. Eng., 2026, 14(1): 2141. 10.22075/jrce.2025.34716.2141.AbdullahA.F.Abdul-RahmanM.B.A.D.Al-AttarA.A.Investigate the mechanical characteristics and microstructure of fibrous-geopolymer concrete exposure to high temperaturesJ. Rehabil. Civ. Eng.2026141214110.22075/jrce.2025.34716.2141Open DOISearch in Google Scholar
Sitarz, M., Figiela, B., Łach, M., Korniejenko, K., Mróz, K., Castro-Gomes, J., et al., Mechanical response of geopolymer foams to heating – Managing coal gangue in fire-resistant materials technology, Energies (Basel), 2022, 15: 3363SitarzM.FigielaB.ŁachM.KorniejenkoK.MrózK.Castro-GomesJ.Mechanical response of geopolymer foams to heating – Managing coal gangue in fire-resistant materials technologyEnergies (Basel)2022153363Search in Google Scholar
Zhang, P., Feng, Z., Guo, J., Zheng, Y., Yuan, P., Mechanical behavior and microscopic damage mechanism of hybrid fiber-reinforced geopolymer concrete at elevated temperature, Ceram. Int., 2024, 50: 53851–53866ZhangP.FengZ.GuoJ.ZhengY.YuanP.Mechanical behavior and microscopic damage mechanism of hybrid fiber-reinforced geopolymer concrete at elevated temperatureCeram. Int.2024505385153866Search in Google Scholar
Tu, W., Zhang, M., Behaviour of alkali-activated concrete at elevated temperatures: A critical review, Cem. Concr. Compos., 2023, 138: 104961TuW.ZhangM.Behaviour of alkali-activated concrete at elevated temperatures: A critical reviewCem. Concr. Compos.2023138104961Search in Google Scholar
Vaičiukynienė, D., Nizevičienė, D., Kielė, A., Janavičius, E., Pupeikis, D., Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag, Constr. Build. Mater., 2018, 184: 485–491. 10.1016/j.conbuildmat.2018.06.213VaičiukynienėD.NizevičienėD.KielėA.JanavičiusE.PupeikisD.Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slagConstr. Build. Mater.201818448549110.1016/j.conbuildmat.2018.06.213Open DOI
Li, L., Guan, J., Xie, Y., Cao, M., Characterization of bending performance of reinforced cementitious composites beams with hybrid fibers after exposure to high temperatures, Struct. Concr., 2021, 23: 395–411. 10.1002/suco.202100078LiL.GuanJ.XieY.CaoM.Characterization of bending performance of reinforced cementitious composites beams with hybrid fibers after exposure to high temperaturesStruct. Concr.20212339541110.1002/suco.202100078Open DOI
Abbas, A.G.N., Aziz, F.N.A.A., Abdan, K., Nasir, N.A.M., Huseien, G.F., A state-of-the-art review on fibre-reinforced geopolymer composites, Constr. Build. Mater., 2022, 330: 127187. 10.1016/j.conbuildmat.2022.127187AbbasA.G.N.AzizF.N.A.A.AbdanK.NasirN.A.M.HuseienG.F.A state-of-the-art review on fibre-reinforced geopolymer compositesConstr. Build. Mater.202233012718710.1016/j.conbuildmat.2022.127187Open DOI
Ranjbar, N., Zhang, M., Fiber-reinforced geopolymer composites: A review, Cem. Concr. Compos., 2020, 107: 103498RanjbarN.ZhangM.Fiber-reinforced geopolymer composites: A reviewCem. Concr. Compos.2020107103498Search in Google Scholar
Khan, M.Z.N., Hao, Y., Hao, H., Shaikh, F.U.A., Liu, K., Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests, Constr. Build. Mater., 2018, 185: 338–353. 10.1016/j.conbuildmat.2018.07.092KhanM.Z.N.HaoY.HaoH.ShaikhF.U.A.LiuK.Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive testsConstr. Build. Mater.201818533835310.1016/j.conbuildmat.2018.07.092Open DOI
Niş, A., Eren, N.A., Çevik, A., Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete, Eur. J. Environ. Civ. Eng., 2022, 27: 519–537. 10.1080/19648189.2022.2052967NişA.ErenN.A.ÇevikA.Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concreteEur. J. Environ. Civ. Eng.20222751953710.1080/19648189.2022.2052967Open DOI
Zhao, J., Trindade, A.C.C., Liebscher, M., de Andrade Silva, F., Mechtcherine, V., A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites, Cem. Concr. Compos., 2023, 137: 104885ZhaoJ.TrindadeA.C.C.LiebscherM.de Andrade SilvaF.MechtcherineV.A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) compositesCem. Concr. Compos.2023137104885Search in Google Scholar
He, P., Jia, D., Lin, T., Wang, M., Zhou, Y., Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Int., 2010, 36: 1447–1453HeP.JiaD.LinT.WangM.ZhouY.Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer compositesCeram. Int.20103614471453Search in Google Scholar
Zhao, Q., Nair, B., Rahimian, T., Balaguru, P., Novel geopolymer based composites with enhanced ductility, J. Mater. Sci., 2007, 42: 3131–3137ZhaoQ.NairB.RahimianT.BalaguruP.Novel geopolymer based composites with enhanced ductilityJ. Mater. Sci.20074231313137Search in Google Scholar
Zhang, H., Sarker, P.K., Wang, Q., He, B., Kuri, J.C., Jiang, Z., Comparison of compressive, flexural, and temperature-induced ductility behaviours of steel-PVA hybrid fibre reinforced OPC and geopolymer concretes after high temperatures exposure, Constr. Build. Mater., 2023, 399: 132560ZhangH.SarkerP.K.WangQ.HeB.KuriJ.C.JiangZ.Comparison of compressive, flexural, and temperature-induced ductility behaviours of steel-PVA hybrid fibre reinforced OPC and geopolymer concretes after high temperatures exposureConstr. Build. Mater.2023399132560Search in Google Scholar
Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26: 6746–6765AbadelA.ElsanadedyH.AlmusallamT.AlaskarA.AbbasH.Al-SalloumY.Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimesEur. J. Environ. Civ. Eng.20222667466765Search in Google Scholar
Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745AlbidahA.AbadelA.AlrshoudiF.AltheebA.AbbasH.Al-SalloumY.Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperaturesJ. Mater. Res. Technol.202091073210745Search in Google Scholar
Abadel, A.A., Alharbi, Y.R., Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures, Mater. Sci.-Poland, 2021, 39: 478–490. 10.2478/msp-2021-0040AbadelA.A.AlharbiY.R.Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperaturesMater. Sci.-Poland20213947849010.2478/msp-2021-0040Open DOI
Wang, J.J., Zhang, S.S., Nie, X.F., Yu, T., Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC), Compos. Struct., 2023, 312: 116879WangJ.J.ZhangS.S.NieX.F.YuT.Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC)Compos. Struct.2023312116879Search in Google Scholar
Zeng, X., Deng, K., Liang, H., Xu, R., Zhao, C., Cui, B., Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC, Eng. Struct., 2020, 207: 110261ZengX.DengK.LiangH.XuR.ZhaoC.CuiB.Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPCEng. Struct.2020207110261Search in Google Scholar
Qaidi, S., Al-Kamaki, Y.S.S., Al-Mahaidi, R., Mohammed, A.S., Ahmed, H.U., Zaid, O., et al., Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate, PLoS One, 2022, 17: e0269664QaidiS.Al-KamakiY.S.S.Al-MahaidiR.MohammedA.S.AhmedH.U.ZaidO.Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregatePLoS One202217e0269664Search in Google Scholar
Alzeebaree, R., Çevik, A., Mohammedameen, A., Niş, A., Gülşan, M.E., Mechanical performance of FRP-confined geopolymer concrete under seawater attack, Adv. Struct. Eng., 2020, 23: 1055–1073AlzeebareeR.ÇevikA.MohammedameenA.NişA.GülşanM.E.Mechanical performance of FRP-confined geopolymer concrete under seawater attackAdv. Struct. Eng.20202310551073Search in Google Scholar
ASTM C618-15: Specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA, USA, 2015. 10.1520/C0618-15ASTM C618-15Specification for coal fly ash and raw or calcined natural pozzolan for use in concreteASTM International, West Conshohocken, PA, USA201510.1520/C0618-15Open DOI
ASTM D3039, Standard test method for tensile properties of polymer matrix composite materials, ASTM International, West Conshohocken, PA, 2003, 10.1520/D3039_D3039M-08ASTM D3039Standard test method for tensile properties of polymer matrix composite materialsASTM InternationalWest Conshohocken, PA200310.1520/D3039_D3039M-08Open DOI
Alharbi, Y.R., Abadel, A.A., Alqarni, A.S., Binyahya, A.S., Compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures, Mater. Sci.-Poland, 2025, 42: 1–17AlharbiY.R.AbadelA.A.AlqarniA.S.BinyahyaA.S.Compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperaturesMater. Sci.-Poland202542117Search in Google Scholar
ASTM C39/C39M-17b: Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, USA, 2017. 10.1520/C0039_C0039M-17BASTM C39/C39M-17b: Standardtest method for compressive strength of cylindrical concrete specimensASTM International, West Conshohocken, PA, USA201710.1520/C0039_C0039M-17BOpen DOI
Albidah, A., Alqarni, A.S., Abbas, H., Almusallam, T., Al-Salloum, Y., Behavior of metakaolin-based geopolymer concrete at ambient and elevated temperatures, Constr. Build. Mater., 2022, 317: 125910AlbidahA.AlqarniA.S.AbbasH.AlmusallamT.Al-SalloumY.Behavior of metakaolin-based geopolymer concrete at ambient and elevated temperaturesConstr. Build. Mater.2022317125910Search in Google Scholar
Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51: 333–355ElsanadedyH.AlmusallamT.Al-SalloumY.IqbalR.Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer compositesJ. Compos. Mater.201751333355Search in Google Scholar
Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640AlwesabiE.A.BakarB.H.A.AlshaikhI.M.H.AkilH.M.Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiberMater. Today Commun.202025101640Search in Google Scholar
Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 2022, 37: 379–388, ElsevierAlwesabiE.A.H.BakarB.H.A.AlshaikhI.M.H.AbadelA.A.AlghamdiH.WasimM.An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concreteStructures202237379388ElsevierSearch in Google Scholar
Thomas, J., Ramaswamy, A., Mechanical properties of steel fiber-reinforced concrete, J. Mater. Civ. Eng., 2007, 19: 385–392ThomasJ.RamaswamyA.Mechanical properties of steel fiber-reinforced concreteJ. Mater. Civ. Eng.200719385392Search in Google Scholar
Abadel, A.A., Flexural behaviour of RC beams with a UHPFRC top layer and hybrid reinforcement of steel and glass fiber reinforced polymer bars, Case Stud. Constr. Mater., 2024, 21: e04017. 10.1016/j.cscm.2024.e04017AbadelA.A.Flexural behaviour of RC beams with a UHPFRC top layer and hybrid reinforcement of steel and glass fiber reinforced polymer barsCase Stud. Constr. Mater.202421e0401710.1016/j.cscm.2024.e04017Open DOI
Xiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., et al., Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash – slag geopolymer composites, Polymers (Basel), 2021, 14: 142XiaoS.CaiY.GuoY.LinJ.LiuG.LanX.Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash – slag geopolymer compositesPolymers (Basel)202114142Search in Google Scholar
Zhong, H., Zhang, M., Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cem. Concr. Compos., 2021, 122: 104167ZhongH.ZhangM.Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer compositesCem. Concr. Compos.2021122104167Search in Google Scholar
Batista, R.P., Trindade, A.C.C., Borges, P.H.R., Silva, F.D.A., Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 2019, 6: 77BatistaR.P.TrindadeA.C.C.BorgesP.H.R.SilvaF.D.A.Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibersFront. Mater.2019677Search in Google Scholar
Ekaputri, J.J., Junaedi, S., Effect of curing temperature and fiber on metakaolin-based geopolymer, Procedia Eng., 2017, 171: 572–583EkaputriJ.J.JunaediS.Effect of curing temperature and fiber on metakaolin-based geopolymerProcedia Eng.2017171572583Search in Google Scholar
Zhang, P., Feng, Z., Yuan, W., Hu, S., Yuan, P., Effect of PVA fiber on properties of geopolymer composites: A comprehensive review, J. Mater. Res. Technol., 2024, 29: 4086–4101. 10.1016/j.jmrt.2024.02.151ZhangP.FengZ.YuanW.HuS.YuanP.Effect of PVA fiber on properties of geopolymer composites: A comprehensive reviewJ. Mater. Res. Technol.2024294086410110.1016/j.jmrt.2024.02.151Open DOI
Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos., 2008, 30: 986–991KongD.L.Y.SanjayanJ.G.Damage behavior of geopolymer composites exposed to elevated temperaturesCem. Concr. Compos.200830986991Search in Google Scholar
Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45ZhangH.Y.KodurV.QiS.L.CaoL.WuB.Development of metakaolin–fly ash based geopolymers for fire resistance applicationsConstr. Build. Mater.2014553845Search in Google Scholar
Abadel, A., Abbas, H., Albidah, A., Almusallam, T., Al-Salloum, Y., Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling, Eng. Sci. Technol. Int. J., 2022, 36: 101147AbadelA.AbbasH.AlbidahA.AlmusallamT.Al-SalloumY.Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and coolingEng. Sci. Technol. Int. J.202236101147Search in Google Scholar
Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592SarkerP.K.KellyS.YaoZ.Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concreteMater. Des.201463584592Search in Google Scholar
Gülşan, M.E., Alzeebaree, R., Rasheed, A.A., Niş, A., Kurtoğlu, A.E., Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber, Constr. Build. Mater., 2019, 211: 271–283. 10.1016/j.conbuildmat.2019.03.228GülşanM.E.AlzeebareeR.RasheedA.A.NişA.KurtoğluA.E.Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiberConstr. Build. Mater.201921127128310.1016/j.conbuildmat.2019.03.228Open DOI
Peng, Z., Kong, L.X., A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stab., 2007, 92: 1061–1071PengZ.KongL.X.A thermal degradation mechanism of polyvinyl alcohol/silica nanocompositesPolym. Degrad. Stab.20079210611071Search in Google Scholar
Zhang, P., Han, X., Zheng, Y., Wan, J., Hui, D., Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete, Rev. Adv. Mater. Sci., 2021, 60: 418–437ZhangP.HanX.ZhengY.WanJ.HuiD.Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concreteRev. Adv. Mater. Sci.202160418437Search in Google Scholar
Sarkar, M., Dana, K., Partial replacement of metakaolin with red ceramic waste in geopolymer, Ceram. Int., 2021, 47: 3473–3483SarkarM.DanaK.Partial replacement of metakaolin with red ceramic waste in geopolymerCeram. Int.20214734733483Search in Google Scholar
Vora, P.R., Dave, U.V., Parametric studies on compressive strength of geopolymer concrete, Procedia Eng., 2013, 51: 210–219VoraP.R.DaveU.V.Parametric studies on compressive strength of geopolymer concreteProcedia Eng.201351210219Search in Google Scholar
Aly, A.M., El-Feky, M.S., Kohail, M., Nasr, E.S.A.R., Performance of geopolymer concrete containing recycled rubber, Constr. Build. Mater., 2019, 207: 136–144AlyA.M.El-FekyM.S.KohailM.NasrE.S.A.R.Performance of geopolymer concrete containing recycled rubberConstr. Build. Mater.2019207136144Search in Google Scholar
Bisby, L.A., Chen, J.F., Li, S.Q., Stratford, T.J., Cueva, N., Crossling, K., Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps, Eng. Struct., 2011, 33: 3381–3391BisbyL.A.ChenJ.F.LiS.Q.StratfordT.J.CuevaN.CrosslingK.Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wrapsEng. Struct.20113333813391Search in Google Scholar
Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement, Structures, 2022, 45: 126–144.AbadelA.A.MasmoudiR.KhanM.I.Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinementStructures202245126144Search in Google Scholar