This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Barrau, O., Boher, C., Gras, R., Rezai-Aria, F., Analysis of the friction and wear behaviour of hot work tool steel for forging. Wear, 2003, 255: 1444–1454. 10.1016/S0043-1648(03)00280-1BarrauO.BoherC.GrasR.Rezai-AriaF.Analysis of the friction and wear behaviour of hot work tool steel for forgingWear20032551444145410.1016/S0043-1648(03)00280-1Open DOI
Saiki, H., Marumo, Y., Minami, A., Sonoi, T., Effect of the surface structure on the resistance to plastic deformation of a hot forging tool, J. Mater. Process. Technol., 2001, 113: 22–27. 10.1016/S0924-0136(01)00632-XSaikiH.MarumoY.MinamiA.SonoiT.Effect of the surface structure on the resistance to plastic deformation of a hot forging toolJ. Mater. Process. Technol.2001113222710.1016/S0924-0136(01)00632-XOpen DOI
Zhang, Z., Delagnes, D., Bernhart, G., Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Mater. Sci. Eng.: A., 2004, 380: 222–230. 10.1016/j.msea.2004.03.067ZhangZ.DelagnesD.BernhartG.Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurementsMater. Sci. Eng.: A.200438022223010.1016/j.msea.2004.03.067Open DOI
Jermolajev, S., Epp, J., Heinzel, C., Brinksmeier, E., Material modifications caused by thermal and mechanical load during grinding, Procedia CIRP, 2016, 45: 43–46. 10.1016/j.procir.2016.02.159JermolajevS.EppJ.HeinzelC.BrinksmeierE.Material modifications caused by thermal and mechanical load during grindingProcedia CIRP201645434610.1016/j.procir.2016.02.159Open DOI
Malik, I.Y., Lorenz, U., Chugreev, A., Behrens, B.A., Microstructure and wear behaviour of high alloyed hot-work tool steels 1.2343 and 1.2367 under thermo-mechanical loading. IOP Conf. Ser. Mater. Sci. Eng., 2019, 629: 012011. 10.1088/1757-899X/629/1/012011MalikI.Y.LorenzU.ChugreevA.BehrensB.A.Microstructure and wear behaviour of high alloyed hot-work tool steels 1.2343 and 1.2367 under thermo-mechanical loadingIOP Conf. Ser. Mater. Sci. Eng.201962901201110.1088/1757-899X/629/1/012011Open DOI
Kula, P., Wolowiec, E., Pietrasik, R., Dybowski, K., Januszewicz, B., Non-steady state approach to the vacuum nitriding for tools, Vacuum, 2013, 88: 1–7. 10.1016/j.vacuum.2012.08.001KulaP.WolowiecE.PietrasikR.DybowskiK.JanuszewiczB.Non-steady state approach to the vacuum nitriding for toolsVacuum2013881710.1016/j.vacuum.2012.08.001Open DOI
Wołowiec-Korecka, E., Michalski, J., Januszewicz, B., The stability of the layer nitrided in low-pressure nitriding process, Coatings, 2023, 13: 257. 10.3390/coatings13020257Wołowiec-KoreckaE.MichalskiJ.JanuszewiczB.The stability of the layer nitrided in low-pressure nitriding processCoatings20231325710.3390/coatings13020257Open DOI
Roliński, E., Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys, In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 413–457RolińskiE.Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloysInThermochemical surface engineering of steelsElsevierAmsterdam, Netherlands2015pp. 413457Search in Google Scholar
Çetinarslan, C.S., Sahin, M., Karaman Genç, S., Sevil, C., Mechanical and metallurgical properties of ion-nitrided austenitic-stainless steel welds. Mater. Sci.-Pol., 2012, 30: 303–312. 10.2478/s13536-012-0052-xÇetinarslanC.S.SahinM.Karaman GençS.SevilC.Mechanical and metallurgical properties of ion-nitrided austenitic-stainless steel weldsMater. Sci.-Pol.20123030331210.2478/s13536-012-0052-xOpen DOI
Spies, H.J., Dalke, A., Case structure and properties of nitrided steels, In Comprehensive materials processing, Elsevier, Amsterdam, Netherlands, 2014, pp. 439–488SpiesH.J.DalkeA.Case structure and properties of nitrided steelsInComprehensive materials processingElsevierAmsterdam, Netherlands2014pp. 439488Search in Google Scholar
Weidner, A., Lippmann, T., Biermann, H., Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steel, J. Mater. Res., 2017, 32: 4305–4316. 10.1557/jmr.2017.308WeidnerA.LippmannT.BiermannH.Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steelJ. Mater. Res.2017324305431610.1557/jmr.2017.308Open DOI
Leskovšek, V., Podgornik, B., Nolan, D., Modelling of residual stress profiles in plasma nitrided tool steel. Mater. Charact., 2008, 59: 454–461. 10.1016/j.matchar.2007.03.009LeskovšekV.PodgornikB.NolanD.Modelling of residual stress profiles in plasma nitrided tool steelMater. Charact.20085945446110.1016/j.matchar.2007.03.009Open DOI
Hawryluk, M., Lachowicz, M., Janik, M., Ziemba, J., Gronostajski, Z., Influence of the nitrided layer thickness of dies made of two types of tool steel used in hot extrusion of valve forgings made of nickel–chromium steel on the durability of these tools. Arch. Civ. Mech. Eng., 2021, 21: 151. 10.1007/s43452-021-00301-8HawrylukM.LachowiczM.JanikM.ZiembaJ.GronostajskiZ.Influence of the nitrided layer thickness of dies made of two types of tool steel used in hot extrusion of valve forgings made of nickel–chromium steel on the durability of these toolsArch. Civ. Mech. Eng.20212115110.1007/s43452-021-00301-8Open DOI
Wolowiec-Korecka, E., Michalski, J., Kucharska, B., Kinetic aspects of low-pressure nitriding process, Vacuum, 2018, 155: 292–299. 10.1016/j.vacuum.2018.06.025Wolowiec-KoreckaE.MichalskiJ.KucharskaB.Kinetic aspects of low-pressure nitriding processVacuum201815529229910.1016/j.vacuum.2018.06.025Open DOI
Yan, P., Chen, K., Wang, Y., Zhou, H., Peng, Z., Jiao, L., et al., Design and performance of property gradient ternary nitride coating based on process control. Materials, 2018, 11: 758. 10.3390/ma11050758YanP.ChenK.WangY.ZhouH.PengZ.JiaoL.Design and performance of property gradient ternary nitride coating based on process controlMaterials20181175810.3390/ma11050758Open DOI
Widomski, P., Kaszuba, M., Sokołowski, P., Lange, A., Walczak, M., Długozima, M., et al., Nitriding of hardfaced layers as a method of improving wear resistance of hot forging tools, Arch. Civ. Mech. Eng., 2023, 23: 241. 10.1007/s43452-023-00778-5WidomskiP.KaszubaM.SokołowskiP.LangeA.WalczakM.DługozimaM.Nitriding of hardfaced layers as a method of improving wear resistance of hot forging toolsArch. Civ. Mech. Eng.20232324110.1007/s43452-023-00778-5Open DOI
Widomski, P., Kaszuba, M., Dobras, D., Zindulka, O., Development of a method of increasing the wear resistance of forging dies in the aspect of tool material, thermo-chemical treatment and PVD coatings applied in a selected hot forging process, Wear, 2021, 477: 203828. 10.1016/j.wear.2021.203828WidomskiP.KaszubaM.DobrasD.ZindulkaO.Development of a method of increasing the wear resistance of forging dies in the aspect of tool material, thermo-chemical treatment and PVD coatings applied in a selected hot forging processWear202147720382810.1016/j.wear.2021.203828Open DOI
Barrallier, L., Classical nitriding of heat treatable steel, In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 393–412BarrallierL.Classical nitriding of heat treatable steelInThermochemical surface engineering of steelsElsevierAmsterdam, Netherlands2015pp. 393412Search in Google Scholar
Youn, K.T., Rhyim, Y.M., Yang, W.J., Lee, J.H., Lee, C.G., Evaluation of thermal fatigue properties of surface treated AISI H13 steel for aluminum die-casting, Key Eng. Mater., 2006, 326–328: 1173–1176. 10.4028/www.scientific.net/KEM.326-328.1173YounK.T.RhyimY.M.YangW.J.LeeJ.H.LeeC.G.Evaluation of thermal fatigue properties of surface treated AISI H13 steel for aluminum die-castingKey Eng. Mater.2006326–3281173117610.4028/www.scientific.net/KEM.326-328.1173Open DOI
Kundalkar, D., Mavalankar, M., Tewari, A., Effect of gas nitriding on the thermal fatigue behavior of martensitic chromium hot-work tool steel, Mater. Sci. Eng.: A., 2016, 651: 391–398. 10.1016/j.msea.2015.10.007KundalkarD.MavalankarM.TewariA.Effect of gas nitriding on the thermal fatigue behavior of martensitic chromium hot-work tool steelMater. Sci. Eng.: A.201665139139810.1016/j.msea.2015.10.007Open DOI
Somers, M.A.J., Christiansen, T.L., Nitriding of steels. In Encyclopedia of materials: metals and alloys, Elsevier, Amsterdam, Netherlands, 2022, pp. 173–189SomersM.A.J.ChristiansenT.L.Nitriding of steelsInEncyclopedia of materials: metals and alloysElsevierAmsterdam, Netherlands2022pp. 173189Search in Google Scholar
Liu, Z.Q., Chen, Y.X., Li, D.X., Hei, Z.K., Hashimoto, H., Microstructural investigation on the precipitation of α″ nitrides and α″ → γ′ nitride transformation in ion-nitrided pure iron, Metall. Mater. Trans. A., 2001, 32: 2681–2688. 10.1007/s11661-001-1020-yLiuZ.Q.ChenY.X.LiD.X.HeiZ.K.HashimotoH.Microstructural investigation on the precipitation of α″ nitrides and α″ → γ′ nitride transformation in ion-nitrided pure ironMetall. Mater. Trans. A.2001322681268810.1007/s11661-001-1020-yOpen DOI
Manfridini, A.P.A., Godoy, C., Avelar-Batista Wilson, J.C., Auad, M.V., Surface hardening of IF steel by plasma nitriding: effect of a shot peening pre-treatment, Surf. Coat. Technol., 2014, 260: 168–178. 10.1016/j.surfcoat.2014.09.064ManfridiniA.P.A.GodoyC.Avelar-Batista WilsonJ.C.AuadM.V.Surface hardening of IF steel by plasma nitriding: effect of a shot peening pre-treatmentSurf. Coat. Technol.201426016817810.1016/j.surfcoat.2014.09.064Open DOI
Wołowiec-Korecka, E., Carburising and nitriding of iron alloys, Springer Nature Switzerland, Cham, 2024Wołowiec-KoreckaE.Carburising and nitriding of iron alloysSpringer Nature SwitzerlandCham2024Search in Google Scholar
Mittemeijer, E.J., Vogels, A.B.P., van der Schaaf, P.J., Aging at room temperature of nitrided α-iron, Scr. Metall., 1980, 14: 411–416. 10.1016/0036-9748(80)90336-1MittemeijerE.J.VogelsA.B.P.van der SchaafP.J.Aging at room temperature of nitrided α-ironScr. Metall.19801441141610.1016/0036-9748(80)90336-1Open DOI
Kardonina, N.I., Yurovskikh, A.S., Kolpakov, A.S., Transformations in the Fe – N system, Met. Sci. Heat. Treat., 2011, 52: 457–467. 10.1007/s11041-010-9301-yKardoninaN.I.YurovskikhA.S.KolpakovA.S.Transformations in the Fe – N systemMet. Sci. Heat. Treat.20115245746710.1007/s11041-010-9301-yOpen DOI
Cheng, L., Mittemeijer, E.J., The tempering of iron-nitrogen martensite; dilatometric and calorimetric analysis, Metall. Trans. A., 1990, 21: 13–26. 10.1007/BF02656420ChengL.MittemeijerE.J.The tempering of iron-nitrogen martensite; dilatometric and calorimetric analysisMetall. Trans. A.199021132610.1007/BF02656420Open DOI
Typek, J., Guskos, N., Zolnierkiewicz, G., Guskos, A., Karolina, K., Pelka, R., et al., FMR study of samples obtained by nitriding and nitrides reduction of nanocrystalline iron. Mater. Sci.-Pol., 2016, 34: 6–12. 10.1515/msp-2016-0014TypekJ.GuskosN.ZolnierkiewiczG.GuskosA.KarolinaK.PelkaR.FMR study of samples obtained by nitriding and nitrides reduction of nanocrystalline ironMater. Sci.-Pol.20163461210.1515/msp-2016-0014Open DOI
Malinov, S., Böttger, A.J., Mittemeijer, E.J., Pekelharing, M.I., Somers, M.A.J., Phase transformations and phase equilibria in the Fe-N system at temperatures below 573 K, Metall. Mater. Trans. A., 2001, 32: 59–73. 10.1007/s11661-001-0102-1MalinovS.BöttgerA.J.MittemeijerE.J.PekelharingM.I.SomersM.A.J.Phase transformations and phase equilibria in the Fe-N system at temperatures below 573 KMetall. Mater. Trans. A.200132597310.1007/s11661-001-0102-1Open DOI
Basso, R.L.O., Pastore, H.O., Schmidt, V., Baumvol, I.J.R., Abarca, S.A.C., de Souza, F.S., et al., Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel. Corros. Sci., 2010, 52: 3133–3139. 10.1016/j.corsci.2010.05.036BassoR.L.O.PastoreH.O.SchmidtV.BaumvolI.J.R.AbarcaS.A.C.de SouzaF.S.Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steelCorros. Sci.2010523133313910.1016/j.corsci.2010.05.036Open DOI
Gontijo, L.C., Machado, R., Miola, E.J., Casteletti, L.C., Nascente, P.A.P., Characterization of plasma-nitrided iron by XRD, SEM and XPS, Surf. Coat. Technol., 2004, 183: 10–17. 10.1016/j.surfcoat.2003.06.026GontijoL.C.MachadoR.MiolaE.J.CastelettiL.C.NascenteP.A.P.Characterization of plasma-nitrided iron by XRD, SEM and XPSSurf. Coat. Technol.2004183101710.1016/j.surfcoat.2003.06.026Open DOI
Lee, T.H., Oh, C.S., Lee, M.K., Han, S.W., Nitride precipitation in salt-bath nitrided interstitial-free steel, Mater. Charact., 2010, 61: 975–981. 10.1016/j.matchar.2010.06.011LeeT.H.OhC.S.LeeM.K.HanS.W.Nitride precipitation in salt-bath nitrided interstitial-free steelMater. Charact.20106197598110.1016/j.matchar.2010.06.011Open DOI
Salas, O., Oseguera, J., Garcí, N., Figueroa, U., Nitriding of an H13 die steel in a dual plasma reactor, J. Mater. Eng. Perform., 2001, 10: 649–655. 10.1361/105994901770344502SalasO.OsegueraJ.GarcíN.FigueroaU.Nitriding of an H13 die steel in a dual plasma reactorJ. Mater. Eng. Perform.20011064965510.1361/105994901770344502Open DOI
Somers, M.A.J., Development of compound layer and diffusion zone during nitriding and nitrocarburizing of iron and steels. In Comprehensive materials processing, Elsevier, Amsterdam, Netherlands, 2014, pp. 413–437SomersM.A.J.Development of compound layer and diffusion zone during nitriding and nitrocarburizing of iron and steelsInComprehensive materials processingElsevierAmsterdam, Netherlands2014pp. 413437Search in Google Scholar
Wang, B., Zhao, X., Li, W., Qin, M., Gu, J., Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel, Appl. Surf. Sci., 2018, 431: 39–43. 10.1016/j.apsusc.2017.03.185WangB.ZhaoX.LiW.QinM.GuJ.Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steelAppl. Surf. Sci.2018431394310.1016/j.apsusc.2017.03.185Open DOI
Gonzalez-Moran, A.K., Naeem, M., Hdz-García, H.M., Granda-Gutiérrez, E.E., Ruíz-Mondragón, J.J., Alvarez-Vera, M., et al., Improved mechanical and wear properties of H13 tool steel by nitrogen-expanded martensite using current-controlled plasma nitriding, J. Mater. Res. Technol., 2023, 25: 4139–4153. 10.1016/j.jmrt.2023.06.221Gonzalez-MoranA.K.NaeemM.Hdz-GarcíaH.M.Granda-GutiérrezE.E.Ruíz-MondragónJ.J.Alvarez-VeraM.Improved mechanical and wear properties of H13 tool steel by nitrogen-expanded martensite using current-controlled plasma nitridingJ. Mater. Res. Technol.2023254139415310.1016/j.jmrt.2023.06.221Open DOI
Kochmański, P., Długozima, M., Baranowska, J., Structure and properties of gas-nitrided, precipitation-hardened martensitic stainless steel, Materials, 2022, 15: 907. 10.3390/ma15030907KochmańskiP.DługozimaM.BaranowskaJ.Structure and properties of gas-nitrided, precipitation-hardened martensitic stainless steelMaterials20221590710.3390/ma15030907Open DOI
Jung, K.S., Schacherl, R.E., Bischoff, E., Mittemeijer, E.J., Normal and excess nitrogen uptake by iron-based Fe–Cr–Al alloys: the role of the Cr/Al atomic ratio, Philos. Mag., 2011, 91: 2382–2403. 10.1080/14786435.2011.563760JungK.S.SchacherlR.E.BischoffE.MittemeijerE.J.Normal and excess nitrogen uptake by iron-based Fe–Cr–Al alloys: the role of the Cr/Al atomic ratioPhilos. Mag.2011912382240310.1080/14786435.2011.563760Open DOI
Mittemeijer, E.J., Nitriding of binary and ternary iron-based alloys, In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 313–340MittemeijerE.J.Nitriding of binary and ternary iron-based alloysInThermochemical surface engineering of steelsElsevierAmsterdam, Netherlands2015pp. 313340Search in Google Scholar
Miyamoto, G., Tomio, Y., Aota, H., Oh-ishi, K., Hono, K., Furuhara, T., Precipitation of nanosized nitrides in plasma nitrided Fe–M (M = Al, Cr, Ti, V) alloys, Mater. Sci. Technol., 2011, 27: 742–746. 10.1179/1743284710Y.0000000014MiyamotoG.TomioY.AotaH.Oh-ishiK.HonoK.FuruharaT.Precipitation of nanosized nitrides in plasma nitrided Fe–M (M = Al, Cr, Ti, V) alloysMater. Sci. Technol.20112774274610.1179/1743284710Y.0000000014Open DOI
Miyamoto, G., Suetsugu, S., Shinbo, K., Furuhara, T., Surface hardening and nitride precipitation in the nitriding of Fe-M1-M2 ternary alloys containing Al, V, or Cr, Metall. Mater. Trans. A., 2015, 46: 5011–5020. 10.1007/s11661-015-3133-8MiyamotoG.SuetsuguS.ShinboK.FuruharaT.Surface hardening and nitride precipitation in the nitriding of Fe-M1-M2 ternary alloys containing Al, V, or CrMetall. Mater. Trans. A.2015465011502010.1007/s11661-015-3133-8Open DOI
Gallego, J.M., Grachev, S.Y., Borsa, D.M., Boerma, D.O., Écija, D., Miranda, R., Mechanisms of epitaxial growth and magnetic properties of γ’-Fe4N(100) films on Cu(100), Phys. Rev. B., 2004, 70: 115417. 10.1103/PhysRevB.70.115417GallegoJ.M.GrachevS.Y.BorsaD.M.BoermaD.O.ÉcijaD.MirandaR.Mechanisms of epitaxial growth and magnetic properties of γ’-Fe4N(100) films on Cu(100)Phys. Rev. B.20047011541710.1103/PhysRevB.70.115417Open DOI
Birol, Y., Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures, Surf. Coat. Technol., 2010, 205: 597–602. 10.1016/j.surfcoat.2010.07.035BirolY.Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperaturesSurf. Coat. Technol.201020559760210.1016/j.surfcoat.2010.07.035Open DOI
Schreiber, G., Rensch, U., Oettel, H., Blawert, C., Mordike, B.L., Thermal stability of PI3 nitrided surface layers on ferritic steels, Surf. Coat. Technol., 2003, 169–170: 447–451. 10.1016/S0257-8972(03)00188-9SchreiberG.RenschU.OettelH.BlawertC.MordikeB.L.Thermal stability of PI3 nitrided surface layers on ferritic steelsSurf. Coat. Technol.2003169–17044745110.1016/S0257-8972(03)00188-9Open DOI
Frączek, T., Michalski, J., Kucharska, B., Opydo, M., Ogórek, M., Phase transformations in the nitrided layer during annealing under reduced pressure, Arch. Civ. Mech. Eng., 2021, 21: 48. 10.1007/s43452-020-00158-3FrączekT.MichalskiJ.KucharskaB.OpydoM.OgórekM.Phase transformations in the nitrided layer during annealing under reduced pressureArch. Civ. Mech. Eng.2021214810.1007/s43452-020-00158-3Open DOI
Liapina, T., Leineweber, A., Mittemeijer, E.J., Nitrogen redistribution in ε/γ′-iron nitride compound layers upon annealing, Scr. Mater., 2003, 48: 1643–1648. 10.1016/S1359-6462(03)00136-2LiapinaT.LeineweberA.MittemeijerE.J.Nitrogen redistribution in ε/γ′-iron nitride compound layers upon annealingScr. Mater.2003481643164810.1016/S1359-6462(03)00136-2Open DOI
Liapina, T., Leineweber, A., Mittemeijer, E.J., Phase transformations in iron-nitride compound layers upon low-temperature annealing: diffusion kinetics of nitrogen in ε- and γ′-iron nitrides, Metall. Mater. Trans. A., 2006, 37: 319–330. 10.1007/s11661-006-0003-4LiapinaT.LeineweberA.MittemeijerE.J.Phase transformations in iron-nitride compound layers upon low-temperature annealing: diffusion kinetics of nitrogen in ε- and γ′-iron nitridesMetall. Mater. Trans. A.20063731933010.1007/s11661-006-0003-4Open DOI
Liapina, T., Leineweber, A., Mittemeijer, E.J., Phase transformations in ε-/γ’-iron nitride compound layers in the temperature range of 613 K–693 K. Defect. Diffus. Forum, 2005, 237–240: 1147–1152. 10.4028/www.scientific.net/DDF.237-240.1147LiapinaT.LeineweberA.MittemeijerE.J.Phase transformations in ε-/γ’-iron nitride compound layers in the temperature range of 613 K–693 KDefect. Diffus. Forum2005237–2401147115210.4028/www.scientific.net/DDF.237-240.1147Open DOI
Somers, M.A.J., Mittemeijer, E.J., Layer-growth kinetics on gaseous nitriding of pure iron: evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall. Mater. Trans. A., 1995, 26: 57–74. 10.1007/BF02669794SomersM.A.J.MittemeijerE.J.Layer-growth kinetics on gaseous nitriding of pure iron: evaluation of diffusion coefficients for nitrogen in iron nitridesMetall. Mater. Trans. A.199526577410.1007/BF02669794Open DOI
Hawryluk, M., Gronostajski, Z., Kaszuba, M., Krawczyk, J., Widomski, P., Ziemba, J., et al., Wear mechanisms analysis of dies used in the process of hot forging a valve made of high nickel steel, Arch. Metall. Mater., 2018, 63(4): 1963–1974. 10.24425/amm.2018.125131HawrylukM.GronostajskiZ.KaszubaM.KrawczykJ.WidomskiP.ZiembaJ.Wear mechanisms analysis of dies used in the process of hot forging a valve made of high nickel steelArch. Metall. Mater.20186341963197410.24425/amm.2018.125131Open DOI
Dworzak, Ł., Hawryluk, M., Janik, M., The impact of the lubricant dose on the reduction of wear dies used in the forging process of the valve forging, Materials, 2021, 14: 212. 10.3390/ma14010212DworzakŁ.HawrylukM.JanikM.The impact of the lubricant dose on the reduction of wear dies used in the forging process of the valve forgingMaterials20211421210.3390/ma14010212Open DOI
Hawryluk, M., Gronostajski, Z., Ziemba, J., Janik, M., Górski, P., Lisowski, M., Support possibilities for 3D scanning of forging tools with deep and slim impressions for an evaluation of wear by means of replication methods, Materials, 2020, 13: 1881. 10.3390/ma13081881HawrylukM.GronostajskiZ.ZiembaJ.JanikM.GórskiP.LisowskiM.Support possibilities for 3D scanning of forging tools with deep and slim impressions for an evaluation of wear by means of replication methodsMaterials202013188110.3390/ma13081881Open DOI
Hawryluk, M., Lachowicz, M., Zwierzchowski, M., Janik, M., Gronostajski, Z., Filipiak, J., Influence of the grade of hot work tool steels and its microstructural features on the durability of punches used in the closed die precision forging of valve forgings made of nickel-chrome steel, Wear, 2023, 528–529: 204963. 10.1016/j.wear.2023.204963HawrylukM.LachowiczM.ZwierzchowskiM.JanikM.GronostajskiZ.FilipiakJ.Influence of the grade of hot work tool steels and its microstructural features on the durability of punches used in the closed die precision forging of valve forgings made of nickel-chrome steelWear2023528–52920496310.1016/j.wear.2023.204963Open DOI
Hawryluk, M., Lachowicz, M., Łukaszek-Sołek, A., Lisiecki, Ł., Ficak, G., Cygan, P., Structural features of fatigue crack propagation of a forging die made of chromium–molybdenum–vanadium tool steel on its durability, Materials, 2023, 16: 4223. 10.3390/ma16124223HawrylukM.LachowiczM.Łukaszek-SołekA.LisieckiŁ.FicakG.CyganP.Structural features of fatigue crack propagation of a forging die made of chromium–molybdenum–vanadium tool steel on its durabilityMaterials202316422310.3390/ma16124223Open DOI
Lachowicz, M.M., Zwierzchowski, M., Smolik, J., Hawryluk, M., Influence of oxidation on the tribological wear of hot work tool steels in sliding contact: implications for the forming process, Arch. Civ. Mech. Eng., 2024, 25: 59. 10.1007/s43452-024-01115-0LachowiczM.M.ZwierzchowskiM.SmolikJ.HawrylukM.Influence of oxidation on the tribological wear of hot work tool steels in sliding contact: implications for the forming processArch. Civ. Mech. Eng.2024255910.1007/s43452-024-01115-0Open DOI
Hawryluk, M., Janik, M., Zwierzchowski, M., Lachowicz, M.M., Krawczyk, J., Possibilities of increasing the durability of dies used in the extrusion process of valve forgings from chrome-nickel steel by using alternative materials from hot-work tool steels, Materials, 2024, 17: 346. 10.3390/ma17020346HawrylukM.JanikM.ZwierzchowskiM.LachowiczM.M.KrawczykJ.Possibilities of increasing the durability of dies used in the extrusion process of valve forgings from chrome-nickel steel by using alternative materials from hot-work tool steelsMaterials20241734610.3390/ma17020346Open DOI
Gronostajski, Z., Kaszuba, M., Hawryluk, M., Marciniak, M., Zwierzchowski, M., Mazurkiewicz, A., et al., Improving durability of hot forging tools by applying hybrid layers, Metalurgija, 2015, 54: 687–690GronostajskiZ.KaszubaM.HawrylukM.MarciniakM.ZwierzchowskiM.MazurkiewiczA.Improving durability of hot forging tools by applying hybrid layersMetalurgija201554687690Search in Google Scholar
Hawryluk, M., Janik, M., Gronostajski, Z., Berełkowski, A., Zwierzchowski, M., Lachowicz, M., et al., Possibilities of increasing the durability of punches used in the forging process in closed dies of valve forgings by using alternative materials from tool steels and sintered carbides, Materials, 2024, 17: 370. 10.3390/ma17020370HawrylukM.JanikM.GronostajskiZ.BerełkowskiA.ZwierzchowskiM.LachowiczM.Possibilities of increasing the durability of punches used in the forging process in closed dies of valve forgings by using alternative materials from tool steels and sintered carbidesMaterials20241737010.3390/ma17020370Open DOI
Lojkowski, W., Djahanbakhsh, M., Bürkle, G., Gierlotka, S., Zielinski, W., Fecht, H.-J., Nanostructure formation on the surface of railway tracks, Mater. Sci. Eng.: A., 2001, 303: 197–208. 10.1016/S0921-5093(00)01947-XLojkowskiW.DjahanbakhshM.BürkleG.GierlotkaS.ZielinskiW.FechtH.-J.Nanostructure formation on the surface of railway tracksMater. Sci. Eng.: A.200130319720810.1016/S0921-5093(00)01947-XOpen DOI
Österle, W., Rooch, H., Pyzalla, A., Wang, L., Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction, Mater. Sci. Eng.: A., 2001, 303: 150–157. 10.1016/S0921-5093(00)01842-6ÖsterleW.RoochH.PyzallaA.WangL.Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffractionMater. Sci. Eng.: A.200130315015710.1016/S0921-5093(00)01842-6Open DOI
Ramesh, A., Melkote, S.N., Allard, L.F., Riester, L., Watkins, T.R., Analysis of white layers formed in hard turning of AISI 52100 steel, Mater. Sci. Eng.: A., 2005, 390: 88–97, 10.1016/j.msea.2004.08.052RameshA.MelkoteS.N.AllardL.F.RiesterL.WatkinsT.R.Analysis of white layers formed in hard turning of AISI 52100 steelMater. Sci. Eng.: A.2005390889710.1016/j.msea.2004.08.052Open DOI
Freisinger, M., Rojacz, H., Trausmuth, A., Mayrhofer, P.H., Severe plastic deformed zones and white etching layers formed during service of railway wheels, Metall. Microstruct. Anal., 2023, 12: 515–527. 10.1007/s13632-023-00967-xFreisingerM.RojaczH.TrausmuthA.MayrhoferP.H.Severe plastic deformed zones and white etching layers formed during service of railway wheelsMetall. Microstruct. Anal.20231251552710.1007/s13632-023-00967-xOpen DOI
Hawryluk, M.R., Lachowicz, M., Janik, M., Gronostajski, Z., Stachowicz, M., Effect of the heating temperature of a nickel-chromium steel charge material on the stability of the forging process and the durability of the die, Arch. Metall. Mater., 2022, 68(2): 711–722. 10.24425/amm.2023.142453HawrylukM.R.LachowiczM.JanikM.GronostajskiZ.StachowiczM.Effect of the heating temperature of a nickel-chromium steel charge material on the stability of the forging process and the durability of the dieArch. Metall. Mater.202268271172210.24425/amm.2023.142453Open DOI
Schneider, R.S.E., Austenitic nitriding and nitrocarburizing of steels. In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 373–400eSchneiderR.S.E.Austenitic nitriding and nitrocarburizing of steelsInThermochemical surface engineering of steelsElsevierAmsterdam, Netherlands2015pp. 373400eSearch in Google Scholar
Lebrun, J.P., Plasma-assisted processes for surface hardening of stainless steel. In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 615–632LebrunJ.P.Plasma-assisted processes for surface hardening of stainless steelInThermochemical surface engineering of steelsElsevierAmsterdam, Netherlands2015pp. 615632Search in Google Scholar
Czerwiec, T., Andrieux, A., Marcos, G., Michel, H., Bauer, P., Is “expanded austenite” really a solid solution? Mössbauer observation of an annealed AISI 316L nitrided sample, J. Alloy. Compd., 2019, 811: 151972. 10.1016/j.jallcom.2019.151972CzerwiecT.AndrieuxA.MarcosG.MichelH.BauerP.Is “expanded austenite” really a solid solution? Mössbauer observation of an annealed AISI 316L nitrided sampleJ. Alloy. Compd.201981115197210.1016/j.jallcom.2019.151972Open DOI
Baranowska, J., Characteristic of the nitride layers on the stainless steel at low temperature, Surf. Coat. Technol., 2004, 180–181: 145–149. 10.1016/j.surfcoat.2003.10.056BaranowskaJ.Characteristic of the nitride layers on the stainless steel at low temperatureSurf. Coat. Technol.2004180–18114514910.1016/j.surfcoat.2003.10.056Open DOI
Yurovskikh, A.S., Kardonina, N.I., Kolpakov, A.S., Phase transformations in nitrided iron powders, Met. Sci. Heat. Treat, 2015, 57: 507–514. 10.1007/s11041-015-9913-3YurovskikhA.S.KardoninaN.I.KolpakovA.S.Phase transformations in nitrided iron powdersMet. Sci. Heat. Treat20155750751410.1007/s11041-015-9913-3Open DOI
Hawryluk, M., Lachowicz, M., Janik, M., Ziemba, J., Gronostajski, Z., Preliminary studies of increasing the durability of forging tools subjected to various variants of surface treatment used in the hot die forging process of producing valve forgings, Eng. Fail. Anal., 2023, 143: 106886. 10.1016/j.engfailanal.2022.106886HawrylukM.LachowiczM.JanikM.ZiembaJ.GronostajskiZ.Preliminary studies of increasing the durability of forging tools subjected to various variants of surface treatment used in the hot die forging process of producing valve forgingsEng. Fail. Anal.202314310688610.1016/j.engfailanal.2022.106886Open DOI
Peng, W.Y., Wu, X.C., Min, Y.A., Xu, L.P., Effect of the compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 die steel, J. Shanghai Univ. (Engl. Ed.) 2003, 7: 87–92. 10.1007/s11741-003-0060-5PengW.Y.WuX.C.MinY.A.XuL.P.Effect of the compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 die steelJ. Shanghai Univ. (Engl. Ed.)20037879210.1007/s11741-003-0060-5Open DOI
Pellizzari, M., Molinari, A., Straffelini, G., Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel, Mater. Sci. Eng.: A., 2003, 352: 186–194. 10.1016/S0921-5093(02)00867-5PellizzariM.MolinariA.StraffeliniG.Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steelMater. Sci. Eng.: A.200335218619410.1016/S0921-5093(02)00867-5Open DOI
Gronostajski, Z., Widomski, P., Kaszuba, M., Zwierzchowski, M., Polak, S., Piechowicz, Ł., et al., Influence of the phase structure of nitrides and properties of nitrided layers on the durability of tools applied in hot forging processes, J. Manuf. Process., 2020, 52: 247–262. 10.1016/j.jmapro.2020.01.037GronostajskiZ.WidomskiP.KaszubaM.ZwierzchowskiM.PolakS.PiechowiczŁ.Influence of the phase structure of nitrides and properties of nitrided layers on the durability of tools applied in hot forging processesJ. Manuf. Process.20205224726210.1016/j.jmapro.2020.01.037Open DOI
Widenmeyer, M., Hansen, T.C., Meissner, E., Niewa, R., Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysis, Z. Anorg. Allg. Chem., 2014, 640: 1265–1274. 10.1002/zaac.201300676WidenmeyerM.HansenT.C.MeissnerE.NiewaR.Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysisZ. Anorg. Allg. Chem.20146401265127410.1002/zaac.201300676Open DOI
Hubicki, R., Richert, M., Wiewióra, M., An experimental study of temperature effect on properties of nitride layers on X37CrMoV51 tool steel used in extrusion aluminium industry, Materials, 2020, 13: 2311. 10.3390/ma13102311HubickiR.RichertM.WiewióraM.An experimental study of temperature effect on properties of nitride layers on X37CrMoV51 tool steel used in extrusion aluminium industryMaterials202013231110.3390/ma13102311Open DOI
Çelik, A., Efeoğlu, I., Sakar, G., Microstructure and structural behavior of ion-nitrided AISI 8620 steel, Mater. Charact., 2001, 46: 39–44. 10.1016/S1044-5803(00)00091-7ÇelikA.EfeoğluI.SakarG.Microstructure and structural behavior of ion-nitrided AISI 8620 steelMater. Charact.200146394410.1016/S1044-5803(00)00091-7Open DOI
Xiong, X.C., Redjaïmia, A., Gouné, M., Pearlite in hypoeutectoid iron–nitrogen binary alloys, J. Mater. Sci., 2009, 44: 632–638. 10.1007/s10853-008-3054-7XiongX.C.RedjaïmiaA.GounéM.Pearlite in hypoeutectoid iron–nitrogen binary alloysJ. Mater. Sci.20094463263810.1007/s10853-008-3054-7Open DOI
Mittemeijer, E.J., Fundamentals of nitriding and nitrocarburizing, In Steel heat treating fundamentals and processes, ASM International, Novelty, OH, United States, 2013, pp. 619–646MittemeijerE.J.Fundamentals of nitriding and nitrocarburizingInSteel heat treating fundamentals and processesASM InternationalNovelty, OH, United States2013pp. 619646Search in Google Scholar
de Souza Lamim, T., Salvaro, D., Giacomelli, R.O., Binder, R., Binder, C., Klein, A.N., et al., Plasma nitrided compound layers in sintered parts: microstructures and wear mechanisms, Wear, 2021, 477: 203810. 10.1016/j.wear.2021.203810de Souza LamimT.SalvaroD.GiacomelliR.O.BinderR.BinderC.KleinA.N.Plasma nitrided compound layers in sintered parts: microstructures and wear mechanismsWear202147720381010.1016/j.wear.2021.203810Open DOI
Kovacı, H., Yetim, A.F., Baran, Ö., Çelik, A., Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 1-constant amplitude loading, Mater. Sci. Eng.: A., 2016, 672: 257–264. 10.1016/j.msea.2016.07.002KovacıH.YetimA.F.BaranÖ.ÇelikA.Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 1-constant amplitude loadingMater. Sci. Eng.: A.201667225726410.1016/j.msea.2016.07.002Open DOI
Kovacı, H., Yetim, A.F., Baran, Ö., Çelik, A., Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 2-variable amplitude loading and load interactions, Mater. Sci. Eng.: A., 2016, 672: 265–275. 10.1016/j.msea.2016.07.003KovacıH.YetimA.F.BaranÖ.ÇelikA.Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 2-variable amplitude loading and load interactionsMater. Sci. Eng.: A.201667226527510.1016/j.msea.2016.07.003Open DOI
Persson, A., Hogmark, S., Bergström, J., Thermal fatigue cracking of surface engineered hot work tool steels, Surf. Coat. Technol., 2005, 191: 216–227. 10.1016/j.surfcoat.2004.04.053PerssonA.HogmarkS.BergströmJ.Thermal fatigue cracking of surface engineered hot work tool steelsSurf. Coat. Technol.200519121622710.1016/j.surfcoat.2004.04.053Open DOI
Pellizzari, M., Molinari, A., Straffelini, G., Thermal fatigue resistance of plasma duplex-treated tool steel, Surf. Coat. Technol., 2001, 142–144: 1109–1115. 10.1016/S0257-8972(01)01223-3PellizzariM.MolinariA.StraffeliniG.Thermal fatigue resistance of plasma duplex-treated tool steelSurf. Coat. Technol.2001142–1441109111510.1016/S0257-8972(01)01223-3Open DOI
Kulkarni, K., Srivastava, A., Shivpuri, R., Bhattacharya, R., Dixit, S., Bhat, D., Thermal cracking behavior of multi-layer LAFAD coatings on nitrided die steels in liquid aluminum processing, Surf. Coat. Technol., 2002, 149: 171–178. 10.1016/S0257-8972(01)01452-9KulkarniK.SrivastavaA.ShivpuriR.BhattacharyaR.DixitS.BhatD.Thermal cracking behavior of multi-layer LAFAD coatings on nitrided die steels in liquid aluminum processingSurf. Coat. Technol.200214917117810.1016/S0257-8972(01)01452-9Open DOI
Haase, B., Dong, J., Irretier, O., Bauckhage, K., Influence of steel surface composition on gas nitriding mechanism, Surf. Eng., 1997, 13: 251–256. 10.1179/sur.1997.13.3.251HaaseB.DongJ.IrretierO.BauckhageK.Influence of steel surface composition on gas nitriding mechanismSurf. Eng.19971325125610.1179/sur.1997.13.3.251Open DOI
Baranowska, J., Importance of surface activation for nitrided layer formation on austenitic stainless steel, Surf. Eng., 2010, 26: 293–298, 10.1179/026708410X12550773058027BaranowskaJ.Importance of surface activation for nitrided layer formation on austenitic stainless steelSurf. Eng.20102629329810.1179/026708410X12550773058027Open DOI
Somers, M.A.J., Christiansen, T.L., Gaseous processes for low temperature surface hardening of stainless steel, In Thermochemical surface engineering of steels, Elsevier, 2015, pp. 581–614SomersM.A.J.ChristiansenT.L.Gaseous processes for low temperature surface hardening of stainless steelInThermochemical surface engineering of steelsElsevier2015pp. 581614Search in Google Scholar