This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Sarker P, Kelly S, Yao Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;29:584–592. doi: 10.1016/j.matdes.2014.06.059SarkerPKellySYaoZ.Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;29:584–592. doi: 10.1016/j.matdes.2014.06.059Open DOISearch in Google Scholar
Abdellatief M, Elrahman MA, Abadel AA, Wasim M, Tahwia A. Ultra-high performance concrete versus ultrahigh performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment. J Build Eng. 2023;79:107835. doi: 10.1016/J.JOBE.202 3.107835AbdellatiefMElrahmanMAAbadelAAWasimMTahwiaA.Ultra-high performance concrete versus ultrahigh performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment. J Build Eng. 2023;79:107835. doi: 10.1016/J.JOBE.202 3.107835Open DOISearch in Google Scholar
Pradhan P, Dwibedy S, Pradhan M, Panda S, Panigrahi SK. Durability characteristics of geopolymer concrete – Progress and perspectives. J Build Eng. 2022;59:105100. doi: 10.1016/J.JOBE.2022.105100PradhanPDwibedySPradhanMPandaSPanigrahiSK.Durability characteristics of geopolymer concrete – Progress and perspectives. J Build Eng. 2022;59:105100. doi: 10.1016/J.JOBE.2022.105100Open DOISearch in Google Scholar
Wardhono A, Law DW, Strano A. The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Eng. 2015;125:650–656. doi: 10.1016/j.proeng.2015.11.095WardhonoALawDWStranoA.The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Eng. 2015;125:650–656. doi:10.1016/j.proeng.2015.11.095Open DOISearch in Google Scholar
Alrshoudi F, Abbas H, Abadel A, Albidah A, Altheeb A, Al-Salloum Y. Compression behavior and modeling of FRP-confined high strength geopolymer concrete. Constr Build Mater. 2021;283:122759. doi: 10.1016/J.CONBUILDMAT.2021.122759AlrshoudiFAbbasHAbadelAAlbidahAAltheebAAl-SalloumY.Compression behavior and modeling of FRP-confined high strength geopolymer concrete. Constr Build Mater. 2021;283:122759. doi: 10.1016/J.CONBUILDMAT.2021.122759Open DOISearch in Google Scholar
Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125–130. doi: 10.1016/J.CONBUILDMAT.2013.01.023TurnerLKCollinsFG.Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125–130. doi: 10.1016/J.CONBUILDMAT.2013.01.023Open DOISearch in Google Scholar
Wasim M, Abadel A, Abu Bakar BH, Alshaikh IMH. Future directions for the application of zero carbon concrete in civil engineering – A review. Case Stud Constr Mater. 2022;17:e01318. doi: 10.1016/J.CSCM.2022.E01318WasimMAbadelAAbu BakarBHAlshaikhIMH.Future directions for the application of zero carbon concrete in civil engineering – A review. Case Stud Constr Mater. 2022;17:e01318. doi: 10.1016/J.CSCM.2022.E01318Open DOISearch in Google Scholar
Qaidi S, Al-Kamaki YSS, Al-Mahaidi R, Mohammed AS, Ahmed HU, Zaid O, Althoey F, Ahmad J, Isleem HF, Bennetts I. Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate. PLoS One. 2022;17:1– 27. doi: 10.1371/journal.pone.0269664QaidiSAl-KamakiYSSAl-MahaidiRMohammedASAhmedHUZaidOAlthoeyFAhmadJIsleemHFBennettsI.Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate. PLoS One. 2022;17:1–27. doi: 10.1371/journal.pone.0269664Open DOISearch in Google Scholar
Alsaif A, Albidah A, Abadel A, Abbas H, Almusallam T, Al-Salloum Y. Behavior of ternary blended cementitious rubberized mixes reinforced with recycled tires steel fibers under different types of impact loads. Structures. 2022;45:2292–2305. doi: 10.1016/J.ISTRUC.202 2.10.049AlsaifAAlbidahAAbadelAAbbasHAlmusallamTAl-SalloumY.Behavior of ternary blended cementitious rubberized mixes reinforced with recycled tires steel fibers under different types of impact loads. Structures. 2022;45:2292–2305. doi: 10.1016/J.ISTRUC.202 2.10.049Open DOISearch in Google Scholar
Singh S, Ransinchung GDRN, Monu K, Kumar P. Laboratory investigation of RAP aggregates for dry lean concrete mixes. Constr Build Mater. 2018;166:808–816. doi: 10.1016/J.CONBUILDMAT.2018.01.131SinghSRansinchungGDRNMonuKKumarP.Laboratory investigation of RAP aggregates for dry lean concrete mixes. Constr Build Mater. 2018;166:808–816. doi: 10.1016/J.CONBUILDMAT.2018.01.131Open DOISearch in Google Scholar
Brand AS, Roesler JR. Bonding in cementitious materials with asphalt-coated particles: Part I – The interfacial transition zone. Constr Build Mater. 2017;130:171–181. doi: 10.1016/J.CONBUILDMAT.2016.10.019BrandASRoeslerJR.Bonding in cementitious materials with asphalt-coated particles: Part I – The interfacial transition zone. Constr Build Mater. 2017;130:171–181. doi: 10.1016/J.CONBUILDMAT.2016.10.019Open DOISearch in Google Scholar
Widayanti A, Soemitro Ria AA, Ekaputri JJ, Suprayitno H. Characterization of Reclaimed Asphalt Pavement (RAP) as a road pavement material (National Road Waru, Sidoarjo). MATEC Web Conf. 2018;181:05001. doi: 10.1051/MATECCONF/201818105001WidayantiASoemitro RiaAAEkaputriJJSuprayitnoH.Characterization of Reclaimed Asphalt Pavement (RAP) as a road pavement material (National Road Waru, Sidoarjo). MATEC Web Conf. 2018;181:05001. doi: 10.1051/MATECCONF/201818105001Open DOISearch in Google Scholar
Federal Highway Administration. User Guidelines for Waste and By-product Materials in Pavement Construction. Washington, DC: FHWA; 2008.Federal Highway Administration. User Guidelines for Waste and By-product Materials in Pavement Construction. Washington, DC: FHWA; 2008.Search in Google Scholar
Tarsi G, Tataranni P, Sangiorgi C. The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials (Basel). 2020;13:4052. doi: 10.3390/MA13184052TarsiGTataranniPSangiorgiC.The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials (Basel). 2020;13:4052. doi: 10.3390/MA13184052Open DOISearch in Google Scholar
Albidah AS. Influence of reclaimed asphalt pavement aggregate on the performance of metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater. 2023;402:132945. doi: 10.1 016/J.CONBUILDMAT.2023.132945AlbidahAS.Influence of reclaimed asphalt pavement aggregate on the performance of metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater. 2023;402:132945. doi: 10.1 016/J.CONBUILDMAT.2023.132945Open DOISearch in Google Scholar
Albidah A, Altheeb A, Alrshoudi F, Abadel A, Abbas H, Al-Salloum Y. Bond performance of GFRP and steel rebars embedded in metakaolin based geopolymer concrete. Structures. 2020;27:1582–1593. doi: 10.1016/J.ISTRUC.2020.07.048AlbidahAAltheebAAlrshoudiFAbadelAAbbasHAl-SalloumY.Bond performance of GFRP and steel rebars embedded in metakaolin based geopolymer concrete. Structures. 2020;27:1582–1593. doi: 10.1016/J.ISTRUC.2020.07.048Open DOISearch in Google Scholar
Mukhtar F, Deifalla A. Shear strength of FRP reinforced deep concrete beams without stirrups: Test database and a critical shear crack-based model. Compos Struct. 2023;307:116636. doi: 10.1016/j.compstruct.202 2.116636MukhtarFDeifallaA.Shear strength of FRP reinforced deep concrete beams without stirrups: Test database and a critical shear crack-based model. Compos Struct. 2023;307:116636. doi: 10.1016/j.compstruct.202 2.116636Open DOISearch in Google Scholar
Elsanadedy HM, Al-Salloum YA, Almusallam TH, Alshenawy AO, Abbas H. Experimental and numerical study on FRP-upgraded RC beams with large rectangular web openings in shear zones. Constr Build Mater. 2019;194:322–343. doi: 10.1016/j.conbuildmat.2018.1 0.238ElsanadedyHMAl-SalloumYAAlmusallamTHAlshenawyAOAbbasH.Experimental and numerical study on FRP-upgraded RC beams with large rectangular web openings in shear zones. Constr Build Mater. 2019;194:322–343. doi: 10.1016/j.conbuildmat.2018.1 0.238Open DOISearch in Google Scholar
El-Sayed TA, Shaheen YB, AbouBakr MM, Abdelnaby RM. Behavior of ferrocement water pipes as an alternative solution for steel water pipes. Case Stud Constr Mater. 2022;18:e01806. doi: 10.1016/j.cscm.202 2.e01806El-SayedTAShaheenYBAbouBakrMMAbdelnabyRM.Behavior of ferrocement water pipes as an alternative solution for steel water pipes. Case Stud Constr Mater. 2022;18:e01806. doi: 10.1016/j.cscm.202 2.e01806Open DOISearch in Google Scholar
Mariam Boban J, Susan John A. A review on the use of ferrocement with stainless steel mesh as a rehabilitation technique. Mater Today Proc. 2021;42:1100–1105. doi: 10.1016/j.matpr.2020.12.490Mariam BobanJSusan JohnA.A review on the use of ferrocement with stainless steel mesh as a rehabilitation technique. Mater Today Proc. 2021;42:1100–1105. doi: 10.1016/j.matpr.2020.12.490Open DOISearch in Google Scholar
Yang X, Zhang B, Zhou A, Wei H, Liu T. Axial compressive behaviour of corroded steel reinforced concrete columns retrofitted with a basalt fibre reinforced polymer-ultrahigh performance concrete jacket. Compos Struct. 2023;304:116447. doi: 10.1016/j.compstruct.202 2.116447YangXZhangBZhouAWeiHLiuT.Axial compressive behaviour of corroded steel reinforced concrete columns retrofitted with a basalt fibre reinforced polymer-ultrahigh performance concrete jacket. Compos Struct. 2023;304:116447. doi: 10.1016/j.compstruct.202 2.116447Open DOISearch in Google Scholar
Xiao S-H, Lin J-X, Li L-J, Guo Y-C, Zeng J-J, Xie Z-H, Wei F-F, Li M. Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars. J Build Eng. 2021;43:103087. doi: 10.1 016/j.jobe.2021.103087XiaoS-HLinJ-XLiL-JGuoY-CZengJ-JXieZ-HWeiF-FLiM.Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars. J Build Eng. 2021;43:103087. doi: 10.1 016/j.jobe.2021.103087Open DOISearch in Google Scholar
Alkhateeb MY, Hejazi F. Reinforced concrete beams externally strengthened by CFRP rods with steel plate, anchorage bolts, and concrete jacketing. Structures. 2022;46:1994–2013. doi: 10.1016/j.istruc.2022.11.024AlkhateebMYHejaziF.Reinforced concrete beams externally strengthened by CFRP rods with steel plate, anchorage bolts, and concrete jacketing. Structures. 2022;46:1994–2013. doi: 10.1016/j.istruc.2022.11.024Open DOISearch in Google Scholar
Jin L, Jiang X, Xia H, Chen F, Du X. Size effect in shear failure of lightweight concrete beams wrapped with CFRP without stirrups: Influence of fiber ratio. Compos Part B Eng. 2020;199:108257. doi: 10.1016/j.compositesb.2020.108257JinLJiangXXiaHChenFDuX.Size effect in shear failure of lightweight concrete beams wrapped with CFRP without stirrups: Influence of fiber ratio. Compos Part B Eng. 2020;199:108257. doi: 10.1016/j.compositesb.2020.108257Open DOISearch in Google Scholar
Rùžek V, Dostayeva AM, Walter J, Grab T, Korniejenko K. Carbon fiber-reinforced geopolymer composites: A review. Fibers. 2023;11:17. doi: 10.3390/FIB11020017RùžekVDostayevaAMWalterJGrabTKorniejenkoK.Carbon fiber-reinforced geopolymer composites: A review. Fibers. 2023;11:17. doi: 10.3390/FIB11020017Open DOISearch in Google Scholar
Matsui K. Effects of curing conditions and test temperatures on the strength of adhesive-bonded joints. Int J Adhes Adhes. 1990;10:277–284. doi: 10.1016/0143-7496(90)90046-ZMatsuiK.Effects of curing conditions and test temperatures on the strength of adhesive-bonded joints. Int J Adhes Adhes. 1990;10:277–284. doi: 10.1016/0143-7496(90)90046-ZOpen DOISearch in Google Scholar
Nguyen TC, Bai Y, Zhao XL, Al-Mahaidi R. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity. Constr Build Mater. 2013;40:899–907. doi: 10.1016/J.CONBUILDMAT.2012.11.035NguyenTCBaiYZhaoXLAl-MahaidiR.Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity. Constr Build Mater. 2013;40:899–907. doi: 10.1016/J.CONBUILDMAT.2012.11.035Open DOISearch in Google Scholar
Hollaway L, Teng JG, M. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Woodhead Publishing, Elsevier, 2008.HollawayLTengJG, M.Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Woodhead Publishing, Elsevier, 2008.Search in Google Scholar
Wang JJ, Zhang SS, Nie XF, Yu T. Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC). Compos Struct. 2023;312:116879. doi: 10.1016/j.compstruct.2023.116879WangJJZhangSSNieXFYuT.Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC). Compos Struct. 2023;312:116879. doi: 10.1016/j.compstruct.2023.116879Open DOISearch in Google Scholar
Zeng X, Deng K, Liang H, Xu R, Zhao C, Cui B. Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC. Eng Struct. 2020;207:110261. doi: 10.1016/j.engstruct.2020.110261ZengXDengKLiangHXuRZhaoCCuiB.Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC. Eng Struct. 2020;207:110261. doi: 10.1016/j.engstruct.2020.110261Open DOISearch in Google Scholar
Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater Sci. 2021;39:478–490. doi: 10.2478/MSP-2021-0040AbadelAAAlharbiYR.Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater Sci. 2021;39:478–490. doi: 10.2478/MSP-2021-0040Open DOISearch in Google Scholar
Al-Bayati G, Kalfat R, Al-Mahaidi R, Hashemi J. Experimental study on crack propagation of CFRP- strengthened RC beams subjected to torsion. Aust J Struct Eng. 2018;19:279–297. doi: 10.1080/13287982.2018.1523293Al-BayatiGKalfatRAl-MahaidiRHashemiJ.Experimental study on crack propagation of CFRP-strengthened RC beams subjected to torsion. Aust J Struct Eng. 2018;19:279–297. doi: 10.1080/13287982.2018.1523293Open DOISearch in Google Scholar
Raouf S, Ibraheem O, Tais A. Confinement effectiveness of CFRP strengthened concrete cylinders subjected to high temperatures. Adv Concr Constr. 2020;9:7. doi: 10.12989/acc.2020.9.6.529RaoufSIbraheemOTaisA.Confinement effectiveness of CFRP strengthened concrete cylinders subjected to high temperatures. Adv Concr Constr. 2020;9:7. doi: 10.12989/acc.2020.9.6.529Open DOISearch in Google Scholar
Alzeebaree R, Xevik A, Mohammedameen A, Ni° A, Eren M, Xan G. Mechanical performance of FRP- confined geopolymer concrete under seawater attack. Adv Struct Eng. 23 (2019). doi: 10.1177/1369433219886964AlzeebareeRXevikAMohammedameenANi°AErenMXanG.Mechanical performance of FRP-confined geopolymer concrete under seawater attack. Adv Struct Eng. 23 (2019). doi: 10.1177/1369433219886964Open DOISearch in Google Scholar
Chen GM, He YH, Jiang T, Lin CJ. Behavior of CFRP- confined recycled aggregate concrete under axial compression. Constr Build Mater. 2016;111:85–97.ChenGMHeYHJiangTLinCJ.Behavior of CFRP-confined recycled aggregate concrete under axial compression. Constr Build Mater. 2016;111:85–97.Search in Google Scholar
McSwain AC, Berube KA, Cusatis G, Landis EN. Confinement effects on fiber pullout forces for ultra- high-performance concrete. Cem Concr Compos. 2018; 91:53–58. doi: 10.1016/j.cemconcomp.2018.04.011McSwainACBerubeKACusatisGLandisEN.Confinement effects on fiber pullout forces for ultra-high-performance concrete. Cem Concr Compos. 2018; 91:53–58. doi: 10.1016/j.cemconcomp.2018.04.011Open DOISearch in Google Scholar
Yazdanbakhsh A, Bank LC. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers (Basel). 2014;6:1810–1826.YazdanbakhshABankLC.A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers (Basel). 2014;6:1810–1826.Search in Google Scholar
Gao C, Huang L, Yan L, Kasal B, Li W. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate. Compos Struct. 2016;155:245–254.GaoCHuangLYanLKasalBLiW.Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate. Compos Struct. 2016;155:245–254.Search in Google Scholar
Mastali M, Dalvand A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos Part B Eng. 2016;92:360–376.MastaliMDalvandA.The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos Part B Eng. 2016;92:360–376.Search in Google Scholar
Makhlouf M, Torsional behavior of RC beams with opening using (CFRP – GFRP – Steel) stirrups. Adv Res. 2016;8:1–10. doi: 10.9734/AIR/2016/30247MakhloufM, Torsional behavior of RC beams with opening using (CFRP – GFRP – Steel) stirrups. Adv Res. 2016;8:1–10. doi: 10.9734/AIR/2016/30247Open DOISearch in Google Scholar
Elwan SK. Torsion strengthening of RC beams using CFRP (parametric study). KSCE J Civ Eng. 2017;21:1273–1281. doi: 10.1007/s12205-016-0156-7ElwanSK.Torsion strengthening of RC beams using CFRP (parametric study). KSCE J Civ Eng. 2017;21:1273–1281. doi: 10.1007/s12205-016-0156-7Open DOISearch in Google Scholar
Aules WA, Saeed YM, Al-Azzawi H, Rad FN. Experimental investigation on short concrete columns laterally strengthened with ferrocement and CFRP. Case Stud Constr Mater. 2022;16:e01130. doi: 10.1016/j.cscm.2022.e01130AulesWASaeedYMAl-AzzawiHRadFN.Experimental investigation on short concrete columns laterally strengthened with ferrocement and CFRP. Case Stud Constr Mater. 2022;16:e01130. doi: 10.1016/j.cscm.2022.e01130Open DOISearch in Google Scholar
Wang G, Wei Y, Shen C, Huang Z, Zheng K. Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns. Thin-Walled Struct. 2023;192:111152. doi: 10.1016/j.tws.2023.111152WangGWeiYShenCHuangZZhengK.Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns. Thin-Walled Struct. 2023;192:111152. doi: 10.1016/j.tws.2023.111152Open DOISearch in Google Scholar
Zhang H, Wu J, Jin F, Zhang C. Effect of corroded stirrups on shear behavior of reinforced recycled aggregate concrete beams strengthened with carbon fiber- reinforced polymer. Compos Part B Eng. 2019;161:357– 368. doi: 10.1016/j.compositesb.2018.12.074ZhangHWuJJinFZhangC.Effect of corroded stirrups on shear behavior of reinforced recycled aggregate concrete beams strengthened with carbon fiber-reinforced polymer. Compos Part B Eng. 2019;161:357–368. doi: 10.1016/j.compositesb.2018.12.074Open DOISearch in Google Scholar
Ma K, Cao X, Song J, Meng X, Qiao L. Axial compressive behavior of concrete-filled steel tubes with GFRP-confined UHPC cores. J Constr Steel Res. 2023;200:107632. doi: 10.1016/j.jcsr.2022.107632MaKCaoXSongJMengXQiaoL.Axial compressive behavior of concrete-filled steel tubes with GFRP-confined UHPC cores. J Constr Steel Res. 2023;200:107632. doi: 10.1016/j.jcsr.2022.107632Open DOISearch in Google Scholar
Li W, Lu Y, Wang P, Jiang Y, Wang L, Shi T, Zheng K. Comparative study of compressive behavior of confined NSC and UHPC/UHPFRC cylinders externally wrapped with CFRP jacket. Eng Struct. 2023;292:116513. doi: 10.1016/j.engstruct.2023.116513LiWLuYWangPJiangYWangLShiTZhengK.Comparative study of compressive behavior of confined NSC and UHPC/UHPFRC cylinders externally wrapped with CFRP jacket. Eng Struct. 2023;292:116513. doi: 10.1016/j.engstruct.2023.116513Open DOISearch in Google Scholar
Nanni A. Flexural behavior and design of RC Members using FRP reinforcement. J Struct Eng. 1993;119. doi: 10.1061/(ASCE)0733-9445(1993)119:11(3344)NanniA.Flexural behavior and design of RC Members using FRP reinforcement. J Struct Eng. 1993;119. doi: 10.1061/(ASCE)0733-9445(1993)119:11(3344)Open DOISearch in Google Scholar
Hung C-C, Hsiao H-J, Shao Y, Yen C-H. A comparative study on the seismic performance of RC beam-column joints retrofitted by ECC, FRP, and concrete jacketing methods. J Build Eng. 2023;64:105691. doi: 10.1016/j.jobe.2022.105691HungC-CHsiaoH-JShaoYYenC-H.A comparative study on the seismic performance of RC beam-column joints retrofitted by ECC, FRP, and concrete jacketing methods. J Build Eng. 2023;64:105691. doi: 10.1016/j.jobe.2022.105691Open DOISearch in Google Scholar
Xiang D, Hou Z, Liu Y, Li Y, Xu X. Flexural behavior and crack width prediction of UHPC slabs reinforced with FRP bars. J Build Eng. 2023;77:107548. doi: 10.1016/j.jobe.2023.107548XiangDHouZLiuYLiYXuX.Flexural behavior and crack width prediction of UHPC slabs reinforced with FRP bars. J Build Eng. 2023;77:107548. doi:10.1016/j.jobe.2023.107548Open DOISearch in Google Scholar
Borrie D, Al-saadi S, Zhao XL, Singh Raman RK, Bai Y. Bonded CFRP/steel systems, remedies of bond degradation and behaviour of CFRP repaired steel: An overview. Polymers (Basel). 2021;13:1533. doi: 10.3390/POLYM13091533BorrieDAl-saadiSZhaoXLSingh RamanRKBaiY.Bonded CFRP/steel systems, remedies of bond degradation and behaviour of CFRP repaired steel: An overview. Polymers (Basel). 2021;13:1533. doi: 10.3390/POLYM13091533Open DOISearch in Google Scholar
Hollaway LC, Cadei J. Progress in the technique of upgrading metallic structures with advanced polymer composites. Prog Struct Eng Mater. 2002;4:131–148. doi: 10.1002/PSE.112HollawayLCCadeiJ.Progress in the technique of upgrading metallic structures with advanced polymer composites. Prog Struct Eng Mater. 2002;4:131–148. doi: 10.1002/PSE.112Open DOISearch in Google Scholar
Abadel AA. Rehabilitation of post-heated rectangular reinforced concrete columns using different strengthening configuration. Struct Concr. 2023. doi: 10.1002/SU CO.202300521AbadelAA.Rehabilitation of post-heated rectangular reinforced concrete columns using different strengthening configuration. Struct Concr. 2023. doi: 10.1002/SU CO.202300521Open DOISearch in Google Scholar
Abadel A, Abbas H, Albidah A, Almusallam T, Al- Salloum Y. Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling. Eng Sci Technol an IntJ. 2022;36:101147. doi: 10.1016/J.JESTCH.2022.1011 47AbadelAAbbasHAlbidahAAlmusallamTAl-SalloumY.Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling. Eng Sci Technol an Int J. 2022;36:101147. doi: 10.1016/J.JESTCH.2022.1011 47Open DOISearch in Google Scholar
Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra high performance concrete cylinders exposed to elevated temperatures. Mater Sci- Pol. 2022. doi: 10.2478/msp-2021-0040AbadelAAAlharbiYR.Confinement effectiveness of CFRP strengthened ultra high performance concrete cylinders exposed to elevated temperatures. Mater Sci-Pol. 2022. doi: 10.2478/msp-2021-0040Open DOISearch in Google Scholar
ASTM D3039/D3039M -08. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials: West Conshohocken, PA; 2008 (n.d.)ASTM D3039/D3039M-08. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials: West Conshohocken, PA; 2008 (n.d.)Search in Google Scholar
Alghannam M, Albidah A, Abbas H, Al-Salloum Y. Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete. Arab J Sci Eng. 2021;46:4399–4408. doi: 10.1007/S13369-020-04970-0/FIGURES/10AlghannamMAlbidahAAbbasHAl-SalloumY.Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete. Arab J Sci Eng. 2021;46:4399–4408. doi: 10.1007/S13369-020-04970-0/FIGURES/10Open DOISearch in Google Scholar
A.-C. ASTM C39/C39M-17. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken; 2017.A.-C. ASTM C39/C39M-17. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken; 2017.Search in Google Scholar
Albidah A, Alqarni AS, Abbas H, Almusallam T, Al- Salloum Y. Behavior of metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater. 2022;317:125910. doi: 10.1016/J.CONBUILDMAT.2021.125910AlbidahAAlqarniASAbbasHAlmusallamTAl-SalloumY.Behavior of metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater. 2022;317:125910. doi: 10.1016/J.CONBUILDMAT.2021.125910Open DOISearch in Google Scholar
Thomas RJ, Fellows AJ, Sorensen AD. Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture. J Mater Civ Eng. 2018;30:04018061. doi: 10.1061/(ASCE)MT.1943-5533.0002262ThomasRJFellowsAJSorensenAD.Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture. J Mater Civ Eng. 2018;30:04018061. doi: 10.1061/(ASCE)MT.1943-5533.0002262Open DOISearch in Google Scholar
Khodair Y, Raza M. Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Constr Build Mater. 2017;131:245–253. doi: 10.1016/J.CONBUILD MAT.2016.11.044KhodairYRazaM.Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Constr Build Mater. 2017;131:245–253. doi: 10.1016/J.CONBUILD MAT.2016.11.044Open DOISearch in Google Scholar
Hassan KE, Brooks JJ, Erdman M. The use of reclaimed asphalt pavement (RAP) aggregates in concrete. Waste Manag Ser. 2000;1:121–128. doi: 10.1016/S0713-2743(00)80024-0HassanKEBrooksJJErdmanM.The use of reclaimed asphalt pavement (RAP) aggregates in concrete. Waste Manag Ser. 2000;1:121–128. doi: 10.1016/S0713-2743(00)80024-0Open DOISearch in Google Scholar
Erdem S, Blankson MA. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. J Hazard Mater. 2014;264:403–410. doi: 10.1016/J.JHAZMAT.2013.11.040ErdemSBlanksonMA.Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. J Hazard Mater. 2014;264:403–410. doi: 10.1016/J.JHAZMAT.2013.11.040Open DOISearch in Google Scholar
Kong DLY, Sanjayan JG. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos. 2008;30:986–991. doi: 10.1016/J.CE MCONCOMP.2008.08.001KongDLYSanjayanJG.Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos. 2008;30:986–991. doi: 10.1016/J.CE MCONCOMP.2008.08.001Open DOISearch in Google Scholar
Zhang HY, Kodur V, Qi SL, Cao L, Wu B. Development of metakaolin–fly ash based geopolymers for fire resistance applications. Constr Build Mater. 2014;55:38–45. doi: 10.1016/J.CONBUILDMAT.2014.01.040ZhangHYKodurVQiSLCaoLWuB.Development of metakaolin–fly ash based geopolymers for fire resistance applications. Constr Build Mater. 2014;55:38–45. doi: 10.1016/J.CONBUILDMAT.2014.01.040Open DOISearch in Google Scholar
Vora PR, Dave UV. Parametric studies on compressive strength of geopolymer concrete. Procedia Eng. 2013;51:210–219. doi: 10.1016/J.PROENG.2013.01.030VoraPRDaveUV.Parametric studies on compressive strength of geopolymer concrete. Procedia Eng. 2013;51:210–219. doi: 10.1016/J.PROENG.2013.01.030Open DOISearch in Google Scholar
Sarkar M, Dana K. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Int. 2021;47:3473–3483. doi: 10.1016/J.CERAMINT.2020.09.191SarkarMDanaK.Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Int. 2021;47:3473–3483. doi: 10.1016/J.CERAMINT.2020.09.191Open DOISearch in Google Scholar
Aly AM, El-Feky MS, Kohail M, Nasr ESAR. Performance of geopolymer concrete containing recycled rubber. Constr Build Mater. 2019;207:136–144. doi: 10.1016/J.CONBUILDMAT.2019.02.121AlyAMEl-FekyMSKohailMNasrESAR.Performance of geopolymer concrete containing recycled rubber. Constr Build Mater. 2019;207:136–144. doi: 10.1016/J.CONBUILDMAT.2019.02.121Open DOISearch in Google Scholar
Bisby LA, Chen JF, Li SQ, Stratford TJ, Cueva N, Crossling K. Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. Eng Struct. 2011;33:3381–3391. doi: 10.1016/J.ENGSTR UCT.2011.07.002BisbyLAChenJFLiSQStratfordTJCuevaNCrosslingK.Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. Eng Struct. 2011;33:3381–3391. doi: 10.1016/J.ENGSTR UCT.2011.07.002Open DOISearch in Google Scholar
Abadel AA, Masmoudi R, Iqbal Khan M. Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement. Structures. 2022;45:126–144. doi: 10.1016/J.ISTRUC.2022.09.026AbadelAAMasmoudiRIqbal KhanM.Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement. Structures. 2022;45:126–144. doi: 10.1016/J.ISTRUC.2022.09.026Open DOISearch in Google Scholar
Khaloo AR, Dehestani M, Rahmatabadi P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008;28:2472– 2482. doi: 10.1016/J.WASMAN.2008.01.015KhalooARDehestaniMRahmatabadiP.Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008;28:2472–2482. doi: 10.1016/J.WASMAN.2008.01.015Open DOISearch in Google Scholar