The role of EU cohesion funds in Romanian labour productivity: Insights from machine learning and econometric modelling
, , e
26 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO
Categoria dell'articolo: Research Article
Pubblicato online: 26 giu 2025
Pagine: 11 - 22
Ricevuto: 20 nov 2024
Accettato: 12 mar 2025
DOI: https://doi.org/10.2478/mmcks-2025-0007
Parole chiave
© 2025 Adriana AnaMaria Davidescu, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1

Estimation of the impact of ESIF on labour productivity_
Variable | Coefficients |
---|---|
log (EAFRDEMFFpc) | 7.3573*** |
log (ERDFpc) | 3.2260*** |
log (GFCF) | 9.5602** |
EduLow | −1.0459*** |
PrimGVA | 1.4592* |
CONS | 49.6282** |
|
104 |
|
8 |
|
25.68 |
Prob > |
0.0000 |
|
38.71 |
Prob > |
0.0000 |
Empirical results of dynamic Dif-GMM estimation_
Variable | Coefficients |
---|---|
LP(−1) | 0.5863*** |
log (EAFRDEMFFpc) | 3.1287*** |
log (GFCF) | 7.6210** |
EduLow | −0.0400** |
PrimGVA | 1.1370** |
CONS | 13.3223* |
|
96 |
|
8 |
Wald |
5725.69 |
Prob > |
0.0000 |
Estimated variable coefficients for modelling labour productivity_
Region | Intercept | log (EAFRDpc) | EduLow | log (GFCF) | PrimGVA | LP(−1) |
---|---|---|---|---|---|---|
RO11 | −9.614 | 3.826 | −0.215 | 12.690 | 0.484 | 0.657 |
RO12 | −15.345 | 9.533 | 0.337 | −6.408 | 1.164 | 0.644 |
RO21 | −18.865 | −0.723 | 0.337 | −6.408 | 1.164 | 0.826 |
RO22 | −20.162 | 8.677 | 0.619 | −5.458 | 0.212 | 0.660 |
RO31 | 55.856 | 2.299 | 0.067 | 1.976 | 0.009 | 0.272 |
RO32 | −26.214 | 2.647 | 0.578 | 33.340 | 4.731 | 0.386 |
RO41 | 77.121 | 5.999 | −1.500 | 11.051 | −2.604 | 0.446 |
RO42 | 45.884 | 2.392 | −0.925 | 6.661 | 3.807 | 0.143 |
Data sources_
Indicator | Source |
---|---|
Labour productivity |
|
EAFRD per capita |
|
EMFF per capita |
|
ERDF per capita |
|
GFCF |
|
Gross Domestic Expenditure on R&D (GERD) |
|
European Quality of Government Index (EQI) |
|
Proportion of Population with Low Education (EduLow) |
|
Share of Primary Sector in Gross Value Added (PrimGVA) |
|
Initial GDP per capita (2007) |
|
Population size |
|
Road accessibility |
|
Air accessibility |
|
|
|
|
|
|
Testing the hypothesis on random effects in modelling labour productivity_
FE test | ||
Statistic |
|
Alternative |
2.9508 | 0.0078 | Significant effects |
Hausman endogeneity test | ||
Statistic |
|
Alternative |
24.7177 | 0.0001 | One model is inconsistent |
LASSO’s results regarding the most important determinants_
Variable | LASSO | Post-estimation OLS |
---|---|---|
log (EAFRDEMFFpc) | 10.0348 | 10.3199** |
log (ERDFpc) | 2.9831 | 3.0211** |
log (GFCF) | 29.2896 | 29.4165** |
log (GERD) | 4.9112 | 4.9793** |
EQI | −15.7593 | −16.1696** |
EduLow | −0.5370 | −0.5364** |
PrimGVA | −0.8517 | −0.8623** |
CONS | 0.4388006 | 1.846910** |
Empirical results of the LASSO method for the labour productivity indicator_
Lambda | L1-Norm | EBIC |
|
---|---|---|---|
5241.22405 | 0.00000 | 705.66556 | 0.0000 |
4775.60815 | 3.48932 | 696.13488 | 0.1274 |
2268.80077 | 21.77004 | 616.51606 | 0.6119 |
1883.59826 | 23.47559 | 607.44592 | 0.6599 |
1563.79637 | 24.66088 | 601.04308 | 0.6941 |
742.92997 | 27.86920 | 582.66685 | 0.7549 |
561.99928 | 29.55684 | 582.16015 | 0.7667 |
425.131884 | 33.10793 | 580.57758 | 0.7803 |