1. bookVolume 14 (2018): Edizione 3 (September 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
2784-1391
Prima pubblicazione
12 Apr 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Prediction of Swelling Parameters of Two Clayey Soils from Algeria Using Artificial Neural Networks

Pubblicato online: 02 Mar 2019
Volume & Edizione: Volume 14 (2018) - Edizione 3 (September 2018)
Pagine: 11 - 26
Dettagli della rivista
License
Formato
Rivista
eISSN
2784-1391
Prima pubblicazione
12 Apr 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

[1] Altmeyer, W.T. (1955). Discussion of engineering properties of expansive clays. Soil Mechanics and Foundations Division. American Society of Testing and Materials. 81(SM2), 17-19.Search in Google Scholar

[2] Seed H.B., Woodward R.J. & Lundgren R. (1962). Prediction of swelling potential for compacted clays. Proc., A.S.C.E.J. of Soil Mech. and Found. Div. 88(SM3), 53-87.10.1061/JSFEAQ.0000431Search in Google Scholar

[3] Ranganatham B.V. & Satyanarayan B. (1965). A rational method of predicting swelling potential for compacted expansive clays. Proc. 6th Inter. Conf. Soil Mechanics Foundation Engng. 1, 92-96.Search in Google Scholar

[4] Komornik A. & David D. (1969). Prediction of swelling pressure of clays. J. ASCE, Soil Mechanics and Foundation Division. 1, 209-225.10.1061/JSFEAQ.0001218Search in Google Scholar

[5] Vijayvergiya V.N. & Ghazzaly O.I. (1973). Prediction of swelling potential of natural clays. Proceedings. 3rd Int. Research. And Engng. Conf on Expansive Clays. 227-234.Search in Google Scholar

[6] Dakshanamurthy V. & Raman V. (1973). A simple method of identifying an expansive soil. Soils and foundations. Japanese Society of Soil Mechanics and Foundation Engineering. 13(1), 97-104.10.3208/sandf1972.13.97Search in Google Scholar

[7] Williams A.B. & Donaldson G.W. (1980). Developments related to building on expansive soils in South Africa. Proceedings of the 4th International Conference on Soil Mechanics and Foundations Engineering, Denver. 2, 834-844.Search in Google Scholar

[8] Building Research Establishment. (1980). Low-rise buildings on shrinkable clay soil. BRE, Part 1. BRE Digest 240, HMSO. London.Search in Google Scholar

[9] Snethen, D.R. (1984). Evaluation of expedient methods for identification and classification of potentially expansive soils. Proceedings, 5th International Conference on Expansive Soils. Adelaide. p 22-26.Search in Google Scholar

[10] Chen, F.H. (1988). Foundations on Expansive Soils. Elsevier. p 280. Amsterdam.Search in Google Scholar

[11] Basma, A.A. (1993). Prediction of Expansion Degree for Natural Compacted Clays. Geotechnical Testing Journal. 16(4), 542-549. DOI :10.1520/GTJ10294J.10.1520/GTJ10294JApri DOISearch in Google Scholar

[12] Al-Shayea, N.A. (2001). The combined effect of clay and moisture content on the behaviour of remodelled unsaturated soil. Engineering Geology. 62, 319-342.10.1016/S0013-7952(01)00032-1Search in Google Scholar

[13] Yilmaz, I. (2006). Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity. Elsevier, Engineering Geology. 85, 295-301. DOI: 10.1016/j.enggeo.2006.02.00510.1016/j.enggeo.2006.02.005Apri DOISearch in Google Scholar

[14] Djedid A., Bekkouche A. & Aissa Mamoune S.M. (2001). Identification and prediction of swelling of some soils of Tlemcen (Algeria). Bulletin Des Laboratoires des Ponts et Chaussées. N°233, 67-75.Search in Google Scholar

[15] Ömür Ç., Nilay K.S. & Hüseyin Y. (2012). Prediction of Swelling Potential and Pressure in Compacted Clay. Arab J Sci Eng. 37, 1535–1546. DOI : 10.1007/s13369-012-0268-4.10.1007/s13369-012-0268-4Apri DOISearch in Google Scholar

[16] Najjar Y.M. & Basheer I.A. (1998). Modelling of soil swelling via regression and neural network approaches. Final report No. KS 98-1. Kansas Department of Transportation. 37.Search in Google Scholar

[17] Najjar Y.M., Basheer I.A. & Mcreynolds R. (1996a). Neural modelling of Kansan soil swelling. Transportation Research Record. 1526, 14-19.10.1177/0361198196152600103Search in Google Scholar

[18] Basma A.A., Barakat S.A. & Omar M. (2003). Modelling time dependent swell of clays using sequential artificial neural networks. Environ Eng Geosci. 9(3), 279–288.10.2113/9.3.279Search in Google Scholar

[19] Meisina C. & Najjar Y. (2004). An artificial neural network approach for predicting swelling/shrinking parameters of Italian clay soils. European geosciences union, geophysical research abstracts. p. 6.Search in Google Scholar

[20] Moosavi M., Yazdanpanah M.J. & Doostmohammadi R. (2006). Modelling the cyclic swelling pressure of mudrock using artificial neural networks. Engineering Geology. 87, 178-194. DOI: 10.1016/j.enggeo.2006.07.001.10.1016/j.enggeo.2006.07.001Apri DOISearch in Google Scholar

[21] Erzin, Y. (2007). Artificial neural networks approach for swell pressure versus soil suction behaviour. Canadian Geotechnical Journal. 44(10), 1215-1223. DOI :10.1139/T07-052.10.1139/T07-052Search in Google Scholar

[22] Doris J.J., Rizzo M.D. & Dewoolkar M.M. (2008). Forecasting vertical ground surface movement from shrinking/swelling soils with artificial neural networks. Int J Numer Anal Methods Geomech. 32, 1229–1245. DOI: 10.1002/nag.666.10.1002/nag.666Apri DOISearch in Google Scholar

[23] Bekkouche A. & Aissa Mamoune S.M. (2008). Estimation of swelling parameters using neural networks. GEODIM 08, Saint-Nazaire, France.Search in Google Scholar

[24] Ashayeri I. & Yasrebi S. (2009). Free-swell and swelling pressure of unsaturated compacted clays; experiments and neural networks. Geotech Geol Eng. 27(1), 137–153. DOI: 10.1007/s10706-008-9219-y.10.1007/s10706-008-9219-yApri DOISearch in Google Scholar

[25] Aissa Mamoune, S.M. (2009). Characterization and modelling of the clays of Tlemcen using neural networks. Doctoral Thesis, University Abou bakr Belkaid, Tlemcen, Algeria.Search in Google Scholar

[26] Banu Ikizler S., Aytekin M., Vekli M. & Kocabas F. (2010). Prediction of swelling pressures of expansive soils using artificial neural networks. Advances in Engineering Software. 41, 647-655. DOI: 10.1016/j.advengsoft.2009.12.00510.1016/j.advengsoft.2009.12.005Apri DOISearch in Google Scholar

[27] Derriche Z. & Kebaili M. (1998). Prediction of swelling of in-Aménas clays. Bulletin Des Laboratoires des Ponts et Chaussées. N°218, 15-23.Search in Google Scholar

[28] Mobarek, H. (2004). Identification and forecast of the swelling of some clays of Algeria. Magister’s thesis, University Mouloud Mammeri, Tizi-Ouzou, Algeria.Search in Google Scholar

[29] Hachichi A. & Fleureau J.M. (1999). Characterization and stabilization of a few expansive soils from Algeria. Revue Française de Géotechnique, Presses des Ponts et Chaussées. 86, 37-51.Search in Google Scholar

[30] Bahar R. & Kenai S. (2002). Damages due to water infiltration case of El-Affroun town. Revue Française de Géotechnique, Presses des Ponts et Chaussées. 101, 91-103.Search in Google Scholar

[31] Nayak N.V. & Christensen R.W. (1971). Swelling characteristics of compacted expansive soils. Clays and Minerals. 19, 251-261.10.1346/CCMN.1971.0190406Search in Google Scholar

[32] Weston, D.J. (1980). Expansive Roadbed Treatment for Southern Africa. In 4th International Conference on Expansive Soils, June 16-18 (339-360). Denver, Colorado, United States.Search in Google Scholar

[33] Alayat H., El Badaoui H., Abdallaoui A., Abrid D. & El Hmaidi A. (2018). Development of mathematical models for predicting the iron concentrations of lake Oubeira waters (ne Algerian). J Fundam Appl Sci. 10(1), 83-96. DOI: 10.4314/jfas.v10i1.6.10.4314/jfas.v10i1.6Apri DOISearch in Google Scholar

[34] Didier, G. (1972). Crystalline and macroscopic swelling of montmorillonites. Thesis for Obtaining the title of Doctor-engineer, University Claude Bernard, France.Search in Google Scholar

[35] Schmitt A., Le Blanc B., Corsini M.M., Lafond C. & Bruzek J. (2001). Les réseaux de neurones artificiels : Un outil de traitement de données prometteur pour l’anthropologie. Bull. et Mém. de la Société d’Anthropologie de Paris. 13(2), 143-150.10.4000/bmsap.4463Search in Google Scholar

[36] Touzet, C. (1992). Les réseaux de neurones-Artificiels Introduction au Connexionnisme -Cours, exercices et travaux pratiques. page 6.Search in Google Scholar

[37] Shahin M.A., Jaksa M.B. & Maier H.R. (2001). Artificial neural network applications in geotechnical engineering. Australian Geomechanics Journal. 36(1), 49-62.Search in Google Scholar

[38] Ghiassian H., Jamshidi R. & Poorebrahim G. (2006). Neural network analysis of silty sand reinforced by carpet wastes. Kuwait.J.Sci.Eng. 33(1), 119-139.Search in Google Scholar

[39] Teh C.I., Wong K.S., Goh A.T.C. & Jaritngam S. (1997). Prediction of pile capacity using neural networks. J Comput Civil Eng ASCE. 11(2), 129–138.10.1061/(ASCE)0887-3801(1997)11:2(129)Search in Google Scholar

[40] El Badaoui H., Abdallaoui A., Manssouri I. & Lancelot L. (2012). Development of Stochastic Mathematical Models for the Prediction of Heavy Metal Levels in Surface Water Using Artificial Neural Networks and Multiple Linear Regression. Journal of Hydrocarbons Mines and Environmental Research. 3, 31-36. DOI: 10.4314/jfas.v10i1.6.10.4314/jfas.v10i1.6Apri DOISearch in Google Scholar

[41] EL Hmaidi A., El Badaoui H., Abdallaoui A. & Bouchta E. (2013). Application of PMC Artificial Neural Networks for the Prediction of Organic Carbon Content in the Quaternary Terminal Deposits of the Alboran Sea. European Journal of Scientific Research. 107, 400-413.Search in Google Scholar

[42] Kisi, O. (2008). Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol Process. 23(2), 213–223. DOI: 10.1002/hyp.712610.1002/hyp.7126Apri DOISearch in Google Scholar

[43] El Badaoui H., Abdallaoui A. & Chabaa S. (2017). Study of the ANN model performance criteria for the prediction of time series humidity, International Journal of Advances in Science Engineering and Technology. (5)1, 117-124.Search in Google Scholar

[44] Bélanger M., El-Jabi N., Caissie D., Ashkar F. & Ribi J. M. (2005). Estimation de la température de l’eau en rivière en utilisant les réseaux de neurones et la régression linéaire multiple. Revue des sciences de l’eau. 18, 403-421. DOI : 10.7202/705565ar.10.7202/705565arApri DOISearch in Google Scholar

[45] Bachir R., Aissa Mamoune S.M. & Habib T. (2018). Using Artificial Neural Networks Approach to Estimate Compressive Strength for Rubberized Concrete. Periodica Polytechnica Civil Engineering. DOI:10.3311/PPci.11928.10.3311/PPci.11928Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo