1. bookVolume 18 (2014): Edizione 2 (June 2014)
    Thematic issue: Geoinformatics
Dettagli della rivista
License
Formato
Rivista
eISSN
2084-6118
Prima pubblicazione
01 Jan 1984
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Laboratory and image spectroscopy for evaluating the biophysical state of meadow vegetation in the Krkonoše National Park

Pubblicato online: 17 Jun 2014
Volume & Edizione: Volume 18 (2014) - Edizione 2 (June 2014) - Thematic issue: Geoinformatics
Pagine: 15 - 22
Ricevuto: 10 Oct 2013
Accettato: 01 Mar 2014
Dettagli della rivista
License
Formato
Rivista
eISSN
2084-6118
Prima pubblicazione
01 Jan 1984
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

Brown, LA, Chen, JM, Leblanc, SG & Cihlar, J 2000, ‘Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis’, Remote Sensing of Environment, vol. 71, no. 1, pp. 16-25.10.1016/S0034-4257(99)00035-8Search in Google Scholar

ČÚZK 2013, Geoportal ČÚZK. Přístup k mapovým produktům a službám resortu. Available from: <http://geoportal.cuzk.cz>. [9 September 2013] Search in Google Scholar

Darvishzadeh, R, Skidmore, A, Schlerf, M, Atzberger, C, Corsi, F & Cho, M 2008, ‘LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 63, no. 4, pp. 409-426.10.1016/j.isprsjprs.2008.01.001Search in Google Scholar

Darvishzadeh, R, Skidmore, A, Schlerf, M & Atzberger, C 2008, ‘Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland’, Remote Sensing of Environment, vol. 112, no. 5, pp. 2592-2604.10.1016/j.rse.2007.12.003Search in Google Scholar

Fensholt, R, Sandholt, I & Rasmussen, MS 2004, ‘Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements’, Remote Sensing of Environment, vol. 91, no. 3-4, pp. 490-507.10.1016/j.rse.2004.04.009Search in Google Scholar

Fernandes, R, Butson, C, Leblanc, S & Latifovic, R 2003, ‘Landsat-5 TM and Landsat-7 ETM based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data’, Canadian Journal of Remote Sensing, vol. 29, no. 2, pp. 241-258.10.5589/m02-092Search in Google Scholar

Gong, P, Pu, R, Biging, GS & Larrieu, MR 2003, ‘Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data’, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 6, pp. 1355-1362.10.1109/TGRS.2003.812910Search in Google Scholar

Gonsamo, A & Pellikka, P 2012, ‘The sensitivity based estimation of leaf area index from spectral vegetation indices’, ISPRS journal of photogrammetry and remote sensing: official publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), vol. 67, no. 4, pp. 15-25.10.1016/j.isprsjprs.2012.03.009Search in Google Scholar

Haboudane, D 2004, ‘Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture’, Remote Sensing of Environment, vol. 90, no. 3, pp. 337-352.10.1016/j.rse.2003.12.013Search in Google Scholar

Klimek, S, Richtergenkemmermann, A, Hofmann, M & Isselstein, J 2007, ‘Plant species richness and composition in managed grasslands: The relative importance of field management and environmental factors’, Biological Conservation, vol. 134, no. 4, pp. 559-570.10.1016/j.biocon.2006.09.007Search in Google Scholar

Malenovský, Z, Homolová, L, Zurita-Milla, R, Lukeš, P, Kaplan, V, Hanuš, J, Gastellu-Etchegorry, J.-P. & Schaepman, ME 2013, ‘Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer’, Remote Sensing of Environment, vol. 131, pp. 85-102.10.1016/j.rse.2012.12.015Search in Google Scholar

Mutanga, O, Skidmore, AK & Prins, HHT 2004, ‘Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features’, Remote Sensing of Environment, vol. 89, no. 3, pp. 393-408.10.1016/j.rse.2003.11.001Search in Google Scholar

Mutanga, O & Skidmore, AK 2007, ‘Red edge shift and biochemical content in grass canopies’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 62, no. 1, pp. 34-42.10.1016/j.isprsjprs.2007.02.001Search in Google Scholar

Myneni, RB & Williams, DL 1994, ‘On the relationship between FAPAR and NDVI’, Remote Sensing of Environment, vol. 49, pp. 200-211.10.1016/0034-4257(94)90016-7Search in Google Scholar

Ramoelo, A, Skidmore, AK, Schlerf, M, Mathieu, R & Heitkönig, IMA 2011, ‘Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations’, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 4, pp. 408-417.10.1016/j.isprsjprs.2011.01.008Search in Google Scholar

Roberts, DA, Roth, KL & Perroy, RKL 2012, ‘Hyperspectral Vegetation Indices’ in Hyperspectral remote sensing of vegetation, eds PS Thenkabail, JG Lyon & A Huete, CRC Press, Boca Raton, pp. 309-327.Search in Google Scholar

Sampson, PH, Zarco-Tejada, PJ, Mohammed, GH, Miller, JR & Noland, TL 2003, ‘Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods’, Forest Science, vol. 49, no. 3, pp. 381-391.Search in Google Scholar

Si, Y, Schlerf, M, Zurita-Milla, R, Skidmore, AK & Wang, T 2012, ‘Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model’, Remote Sensing of Environment, vol. 121, pp. 415-425.10.1016/j.rse.2012.02.011Search in Google Scholar

Skidmore, AK, Ferwerda, JG, Mutanga, O, van Wieren, SE, Peel, M, Grant, RC, Prins, HHT, Balcik, FB & Venus, V 2010, ‘Forage quality of savannas Simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery’, Remote Sensing of Environment, vol. 114, no. 1, pp. 64-72.10.1016/j.rse.2009.08.010Search in Google Scholar

Thenkabail, PS, Smith, RB & De Pauw, E 2000, ‘Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics’, Remote Sensing of Environment, vol. 71, no. 2, pp. 158-182.10.1016/S0034-4257(99)00067-XSearch in Google Scholar

Tian, YC, Yao, X, Yang, J, Cao, WX, Hannaway, DB & Zhu, Y 2011, ‘Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance’, Field Crops Research, vol. 120, no. 2, pp. 299-310.10.1016/j.fcr.2010.11.002Search in Google Scholar

Wang, F, Huang, J, Tang Y & Wang, X 2007, ‘New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice’, Rice Science, vol. 14, no. 3, pp. 195-203.10.1016/S1672-6308(07)60027-4Search in Google Scholar

Zagajewski, B & Jarocinska, A 2009, ‘Analysis of plant condition of the Bystrzanka catchment’, in Proceedings of the 28th EARSeL Symposium, IOS Press, Millpress Science Publishers, pp. 498-504.Search in Google Scholar

Zarco-Tejada, PJ, Miller, JR, Noland, TL, Mohammed, GH & Sampson, PH 2001, ‘Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data’, IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1491-1507.10.1109/36.934080Search in Google Scholar

Zheng, G & Moskal, LM 2009, ‘Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors’, Sensors, vol. 9, no. 4, pp. 2719-2745.10.3390/s90402719334879222574042Search in Google Scholar

Zvára, K 2003, Biostatistika, Karolinum, Praha. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo