Accesso libero

Assessing and forecasting the influence of environmental controls on windstorm disturbances in the Central Low Tatras, through regression models

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Albrecht, A., Hanewinkel, M., Bauhus, J., & Kohnle, U. (2012). How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. European Journal of Forest Research, 131(1), 229–247. https://doi.org/10.1007/s10342-010-0432-x Search in Google Scholar

Čada, V., Morrissey, R. C., Michalová, Z., Bače, R., Janda, P., & Svoboda, M. (2016). Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecology and Management, 363, 169–178. https://doi.org/10.1016/j.foreco.2015.12.023 Search in Google Scholar

Dobbertin, M. (2002). Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. Forest Snow and Landscape Research, 77(1–2), 187–205. Search in Google Scholar

Dobor, L., Hlásny, T., & Zimová, S. (2020). Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management. Ecology and Evolution, 10, 12233–12245. https://doi.org/10.1002/ece3.6854 Search in Google Scholar

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., …, & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x Search in Google Scholar

Everham, E. M., & Brokaw, N. V. L. (1996). Forest Damage and Recovery from Catastrophic Wind. The Botanical Review, 62, 113–185. Search in Google Scholar

Falťan, V., Katina, S., Bánovský, M., & Pazúrová, Z. (2009). The Influence of Site Conditions on the Impact of Windstorms on Forests: The Case of the High Tatras Foothills (Slovakia) in 2004. Moravian Geographical Reports, 17(3), 10–18. Search in Google Scholar

Falťan, V., Katina, S., Minár, J., Polčák, N., Bánovský, M., Maretta, M., Zámečník, S., & Petrovič, F. (2020). Evaluation of abiotic controls on windthrow disturbance using a generalized additive model: A case study of the Tatra National Park, Slovakia. Forests, 11, 1259. https://doi.org/10.3390/f11121259 Search in Google Scholar

Falťan, V., Petrovič, F., Gábor, M., Šagát, V., & Hruška, M. (2021). Mountain landscape dynamics after large wind and bark beetle disasters and subsequent logging—case studies from the Carpathians. Remote Sensing, 13, 3873. https://doi.org/10.3390/rs13193873 Search in Google Scholar

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10.010 Search in Google Scholar

Fleischer, P., Pichler, P., Fleischer, P. (Jr.), Holko, L., Máliš, F., Gömöryová, E., Cudlín, P., Holeksa, J., Michalová, Z., Homolová, Z., Škvarenina, J., Střelcová, K., & Hlaváč, P. (2017). Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Climate Research, 73, 57–71. https://doi.org/10.3354/cr01461 Search in Google Scholar

Foster, D. R., & Boose, E. R. (1992). Patterns of Forest Damage Resulting from Catastrophic Wind in Central New England, USA. Journal of Ecology, 80(1), 79–98. https://doi.org/https://www.jstor.org/stable/2261065 Search in Google Scholar

Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87(417), 178–183. https://doi.org/10.1080/01621459.1992.10475190 Search in Google Scholar

Griess, V. C., Acevedo, R., Härtl, F., Staupendahl, K., & Knoke, T. (2012). Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. Forest Ecology and Management, 267, 284–296. https://doi.org/10.1016/j.foreco.2011.11.035 Search in Google Scholar

Hanewinkel, M., Kuhn, T., Bugmann, H., Lanz, A., & Brang, P. (2014). Vulnerability of uneven-aged forests to storm damage. Forestry, 87, 525–534. https://doi.org/10.1093/forestry/cpu008 Search in Google Scholar

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., …, & Townshend, J. R. G. (2013). High-resolution global maps of 21st century forest cover change. Science, 342, 850–853. http://earthenginepartners.appspot.com/science-2013-global-forest Search in Google Scholar

Jakuš, R., Mezei, P., & Blaženec, M. (2015). Ekologické základy ochrany lesa- disturbancie v lesných ekosystémoch. In R. Jakuš & M. Blaženec (Eds.), Princípy ochrany dospelých smrekových porastov pred podkôrnym hmyzom (pp. 93–108). Department of Forest Ecology, Slovak Academy of Sciences. Search in Google Scholar

Jalkanen, A., & Mattila, U. (2000). Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. Forest Ecology and Management, 135, 315–330. https://doi.org/10.1016/S0378-1127(00)00289-9 Search in Google Scholar

Kenderes, K., Aszalós, R., Ruff, J., Barton, Z., & Standovár, T. (2007). Effects of topography and tree stand characteristics on susceptibility of forests to natural disturbances (ice and wind) in the Börzsöny Mountains (Hungary). Community Ecology, 8(2), 209–220. https://doi.org/10.1556/ComEc.8.2007.2.7 Search in Google Scholar

Klaus, M., Holsten, A., Hostert, P., & Kropp, J. P. (2011). Integrated methodology to assess windthrow impacts on forest stands under climate change. Forest Ecology and Management, 261, 1799–1810. https://doi.org/10.1016/j.foreco.2011.02.002 Search in Google Scholar

Klopcic, M., Poljanec, A., Gartner, A., & Boncina, A. (2009). Factors related to natural disturbances in mountain Norway spruce (Picea abies) forests in the Julian Alps. Ecoscience, 16(1), 48–57. https://doi.org/10.2980/16-1-3181 Search in Google Scholar

Konôpka, B., Zach, P., & Kulfan, J. (2016). Wind – An important ecological factor and destructive agent in forests. Forestry Journal, 62, 123–130. https://doi.org/10.1515/forj-2016-0013 Search in Google Scholar

Kopecký, M., & Čížková, Š. (2010). Using topographic wetness index in vegetation ecology: Does the algorithm matter? Applied Vegetation Science, 13, 450–459. https://doi.org/10.1111/j.1654-109X.2010.01083.x Search in Google Scholar

Kramer, M. G., Hansen, A. J., Taper, M. L., & Kissinger, E. J. (2001). Abiotic controls on long-term windthrow disturbance and temperate rain forest dynamics in Southeast Alaska. Ecology, 82(10), 2749–2768. https://doi.org/10.2307/2679958 Search in Google Scholar

Krejci, L., Kolejka, J., Vozenilek, V., & Machar, I. (2018). Application of GIS to empirical windthrow risk model in mountain forested landscapes. Forests, 9, 96. https://doi.org/10.3390/F9020096 Search in Google Scholar

Lanquaye-Opoku, N., & Mitchell, S. J. (2005). Portability of stand-level empirical windthrow risk models. Forest Ecology and Management, 216, 134–148. https://doi.org/10.1016/j.foreco.2005.05.032 Search in Google Scholar

Lohmander, P., & Helles, F. (1987). Windthrow probability as a function of stand characteristics and shelter. Scandinavian Journal of Forest Research, 2, 227–238. https://doi.org/10.1080/02827588709382460 Search in Google Scholar

Mayer, P., Brang, P., Dobbertin, M., Hallenbarter, D., Renaud, J. P., Walthert, L., & Zimmermann, S. (2005). Forest storm damage is more frequent on acidic soils. Annals of Forest Science, 62(4), 303–311. https://doi.org/10.1051/forest:2005025 Search in Google Scholar

Mezei, P., Blaženec, M., Grodzki, W., Škvarenina, J., & Jakuš, R. (2017a). Influence of different forest protection strategies on spruce tree mortality during a bark beetle outbreak. Annals of Forest Science, 74, 65. https://doi.org/10.1007/s13595-017-0663-9 Search in Google Scholar

Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., …, & Netherer, S. (2017b). Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242, 85–95. https://doi.org/10.1016/j.agrformet.2017.04.004 Search in Google Scholar

Mikita, T., Klimanek, M., & Kolejka, J. (2012). Usage of multidimensional statistic methods with MAXTOPEX factor for Windthrow risk assessment. Allgemeine Forst Und Jagdzeitung, 183(3–4), 63–74. Search in Google Scholar

Minár, J., Falťan, V., Bánovský, M., Damankošová, Z., & Kožuch, M. (2009). Influence of site conditions on the windstorm impact: A case study of the High Tatras foothills in 2004. Landform Analysis, 10, 95–101. Search in Google Scholar

Nikolov, C., Konôpka, B., Kajba, M., Galko, J., Kunca, A., & Janský, L. (2014). Post-disaster forest management and bark beetle outbreak in Tatra National Park, Slovakia. Mountain Research and Development, 34(4), 326–335. https://doi.org/10.1659/MRD-JOURNAL-D-13-00017.1 Search in Google Scholar

Nováková, M. H., & Edwards-Jonášová, M. (2015). Restoration of Central-European mountain Norway spruce forest 15 years after natural and anthropogenic disturbance. Forest Ecology and Management, 344, 120–130. https://doi.org/10.1016/j.foreco.2015.02.010 Search in Google Scholar

Ochtyra, A. (2020). Forest disturbances in Polish Tatra Mountains for 1985–2016 in relation to topography, stand features, and protection zone. Forests, 11, 579. https://doi.org/10.3390/F11050579 Search in Google Scholar

Oťaheľ, J., Feranec, J., Kopecká, M., & Falťan, V. (2017). Modifikácia metódy CORINE Land Cover a legenda pre identifikáciu a zaznamenávanie tried krajinnej pokrývky v mierke 1:10 000 na báze príkladových štúdií z územia Slovenska. Geographical Journal, 69(3), 189–224. Search in Google Scholar

Panferov, O., Doering, C., Rauch, E., Sogachev, A., & Ahrends, B. (2009). Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate. Environmental Research Letters, 4. https://doi.org/10.1088/1748-9326/4/4/045019 Search in Google Scholar

Pawlik, Ł., Godziek, J., & Zawolik, Ł. (2022). Forest damage by extra-tropical cyclone Klaus-Modeling and prediction. Forests, 13, 1991. https://doi.org/10.3390/f13121991 Search in Google Scholar

Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ. https://doi.org/10.7717/peerj.6876 Search in Google Scholar

Peterson, C. J., & Pickett, S. T. A. (1991). Treefall and resprouting following catastrophic windthrow in an old-growth hemlock-hardwoods forest. Forest Ecology and Management, 42, 205–217. Search in Google Scholar

Roberts, D. W. (1986). Ordination on the basis of fuzzy set theory. Vegetatio, 66(3), 123–131. https://www.jstor.org/stable/20037322 Search in Google Scholar

Romagnoli, F., Cadei, A., Costa, M., Maragon, D., Pellegrini, G., Nardi, D., …, & Cavalli, R. (2023). Windstorm impacts on European forest-related systems: An interdisciplinary perspective. Forest Ecology and Management, 541, 121048. https://doi.org/10.1016/j.foreco.2023.121048 Search in Google Scholar

Ruel, J. C. (1995). Understanding windthrow: Silvicultural implications. The Forestry Chronicle, 71(4), 434–445. Search in Google Scholar

Ruel, J. (2000). Factors influencing windthrow in balsam fir forests : from landscape studies to individual tree studies. Forest Ecology and Management, 135, 169–178. Search in Google Scholar

Schelhaas, M. J., Nabuurs, G. J., & Schuck, A. (2003). Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology, 9, 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x Search in Google Scholar

Schindler, D., Jung, C., & Buchholz, A. (2016). Using highly resolved maximum gust speed as predictor for forest storm damage caused by the high-impact winter storm Lothar in Southwest Germany. Atmospheric Science Letters, 17, 462–469. https://doi.org/10.1002/asl.679 Search in Google Scholar

Schmidt, M., Hanewinkel, M., Kändler, G., Kublin, E., & Kohnle, U. (2010). An inventory-based approach for modeling singletree storm damage – experiences with the winter storm of 1999 in southwestern Germany. Canadian Journal of Forest Research, 40, 1636–1652. https://doi.org/10.1139/X10-099 Search in Google Scholar

Schmoeckel, J., & Kottmeier, C. (2008). Storm damage in the Black Forest caused by the winter storm “Lothar” – Part 1: Airborne damage assessment. Natural Hazards and Earth System Science, 8, 795–803. https://doi.org/10.5194/nhess-8-795-2008 Search in Google Scholar

Schütz, J. P., Götz, M., Schmid, W., & Mandallaz, D. (2006). Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. European Journal of Forest Research, 125, 291–302. https://doi.org/10.1007/s10342-006-0111-0 Search in Google Scholar

Seidl, R., & Blennow, K. (2012). Pervasive growth reduction in Norway spruce forests following wind disturbance. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0033301 Search in Google Scholar

Seidl, R., Schelhaas, M. J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4, 806–810. https://doi.org/10.1038/nclimate2318 Search in Google Scholar

Sproull, G. J., Adamus, M., Bukowski, M., Krzyzanowski, T., Szewczyk, J., Statwick, J., & Szwagrzyk, J. (2015). Tree and stand-level patterns and predictors of Norway spruce mortality caused by bark beetle infestation in the Tatra Mountains. Forest Ecology and Management, 354, 261–271. https://doi.org/10.1016/j.foreco.2015.06.006 Search in Google Scholar

Stathers, R. J., Rollerson, T. P., & Mitchell, S. J. (1994). Windthrow Handbook for British Columbia Forests (Working Paper 9401). Victoria B.C., Ministry of Forests. Search in Google Scholar

Suvanto, S., Peltoniemi, M., Tuominen, S., Strandström, M., & Lehtonen, A. (2019). High-resolution mapping of forest vulnerability to wind for disturbance-aware forestry. Forest Ecology and Management, 453, 117619. https://doi.org/10.1016/j.foreco.2019.117619 Search in Google Scholar

Svoboda, M., Janda, P., Nagel, T. A., Fraver, S., Rejzek, J., & Bače, R. (2012). Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. Journal of Vegetation Science, 23, 86–97. https://doi.org/10.1111/j.1654-1103.2011.01329.x Search in Google Scholar

Šagát, V., & Rusinko, A. (2022). Comparison of digital elevation models considering explanatory power of derived topographic variables entering generalized additive models of deforestation. Sborník Abstraktů 25. Kongresu ČGS a 18. Kongresu SGS, 213. Search in Google Scholar

Šagát, V., Ružek, I., Šilhán, K., & Beracko, P. (2021). The impact of local climate change on radial Picea abies growth: A case study in natural mountain spruce stand and low-lying spruce monoculture. Forests, 12, 1118. https://doi.org/10.3390/f12081118 Search in Google Scholar

Usbeck, T., Wohlgemuth, T., Dobbertin, M., Pfister, C., Bürgi, A., & Rebetez, M. (2010). Increasing storm damage to forests in Switzerland from 1858 to 2007. Agricultural and Forest Meteorology, 150, 47–55. https://doi.org/10.1016/j.agrformet.2009.08.010 Search in Google Scholar

Valinger, E., & Fridman, J. (2011). Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. Forest Ecology and Management, 262, 398–403. https://doi.org/10.1016/j.foreco.2011.04.004 Search in Google Scholar

Weis, A. D. (2001). Topographic position and landforms analysis. ESRI User Conference. http://scholar.google.com/scholar?hl=enandbtnG=Searchandq=intitle:Topographic+Position+and+Landforms+Analysis#0 Search in Google Scholar

White, P. S., & Pickett, S. T. A. (1985). Natural disturbance and patch dynamics: An introduction. In P. White & S. T. A. Pickett (Eds.), The ecology of natural disturbance and patch dynamics (pp. 3–13). Academic Press. https://doi.org/10.1016/b978-0-12-554520-4.50006-x Search in Google Scholar

Wood, S. N. (2017). Generalized Additive Models: An introduction with R. Chapman and Hall, CRC. https://doi.org/https://doi.org/10.1016/C2009-0-02952-3 Search in Google Scholar

Wood, S. N. (2008). Fast stable direct fitting and smoothness selection for Generalized Additive Models. Journal of the Royal Statistical Society, 70(3), 495–518. https://www.jstor.org/stable/20203839 Search in Google Scholar

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. https://doi.org/10.1111/j.2041-210x.2009.00001.x Search in Google Scholar

eISSN:
2199-6202
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Business and Economics, Business Management, Industries, Environmental Management, Geosciences, Geography