Accesso libero

Carbohydrate Metabolism in Diabetic Rat’s Heart – The Effects of Acetylsalicylic Acid and Heat Preconditioning as HSP70 Inducers

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Yellon, D.M., Baxter, G.F. (1995). A ‘’second window of protection’’ or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol. 27(4): 1023-1034. https://doi.org/10.1016/0022-2828(95)90071-310.1016/0022-2828(95)90071-37563099 Search in Google Scholar

2. Joyeux-Faure, M., Arnaud, C., Godin-Ribuot, D., Ribuot, C. (2003). Heat stress preconditioning and delayed myocardial protection: what is new? Cardiovasc Res. 60(3): 469-477. https://doi.org/10.1016/j.cardiores.2003.08.012 PMid:1465979210.1016/j.cardiores.2003.08.01214659792 Search in Google Scholar

3. Hooper, P.L., Balogh, G., Rivas, E., Kavanagh, K., Vigh, L. (2014). The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19(4): 447-464. https://doi.org/10.1007/s12192-014-0493-8 PMid:24523032 PMCid:PMC404194210.1007/s12192-014-0493-8404194224523032 Search in Google Scholar

4. Bathaie, S.Z., Jafarnejad, A., Hosseinkhani, S., Nakhjavani, M. (2010). The effect of hot-tub therapy on serum Hsp70 level and its benefit on diabetic rats: a preliminary report. Int J Hyperth. 26(6): 577-585. https://doi.org/10.3109/02656736.2010.485594 PMid:2070765210.3109/02656736.2010.48559420707652 Search in Google Scholar

5. Kondo, T., Sasaki, K., Matsuyama, R., Morino-Koga, S., Adachi, H., Suico, M.A., et al. (2012). Hyperthermia with mild electrical stimulation protects pancreatic β-cells from cell stresses and apoptosis. Diabetes 61(4): 838-847. https://doi.org/10.2337/db11-1098 PMid:22362176 PMCid:PMC331436310.2337/db11-1098331436322362176 Search in Google Scholar

6. Horowitz, M. (2003). Matching the heart to heat-induced circulatory load: heat acclamatory responses. News Physiol Sci. 8, 215-221. https://doi.org/10.1152/nips.01453.2003 PMid:1461415210.1152/nips.01453.200314614152 Search in Google Scholar

7. Fawcett, J.W., Xu, Q., Holbrook, K.J. (1997). Potentiation of heat stress-induced HSP70 expression in vivo by aspirin. Cell Stress Chaperones 2(2): 104-109. https://doi.org/10.1379/1466-1268(1997)002<0104:POHSIH>2.3.CO;210.1379/1466-1268(1997)002<0104:POHSIH>2.3.CO;2 Search in Google Scholar

8. Jurivich, D.A., Sistonen, L., Kroes, R., Morimoto, R.I. (1992). Effect of sodium salicylate on the human heat shock response. Science 255, 1243-1245. https://doi.org/10.1126/science.1546322 PMid:154632210.1126/science.1546322 Search in Google Scholar

9. Wu, D., Xu, J., Song, E., Tang, S., Zhang, X., Kemper, N., Hartung, J., Bao, E. (2015). Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression. Cell Stress Chaperones 20(4): 687-696. https://doi.org/10.1007/s12192-015-0596-x PMid:25956131 PMCid:PMC446391810.1007/s12192-015-0596-x Search in Google Scholar

10. Amici, C., Rossi, A., Santoro, G.M. (1995). Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response. Cancer Res. 55, 4452-4457. Search in Google Scholar

11. Xu, J., Tang, S., Yin, B., Sun, J., Song, E., Bao, E. (2017). Co-enzyme Q10 and acetyl salicylic acid enhance Hsp70 expression in primary chicken myocardial cells to protect the cells during heat stress. Mol Cell Biochem. 435(1-2): 73-86. https://doi.org/10.1007/s11010-017-3058-1 PMid:2849736910.1007/s11010-017-3058-1 Search in Google Scholar

12. Yamagishi, N., Nakayama, K., Wakatsuki, T, Hatayama, T. (2001). Characteristic changes of stress protein expression in streptozotocin-induced diabetic rats. Life Sci. 69(22): 2603-2609. https://doi.org/10.1016/S0024-3205(01)01337-610.1016/S0024-3205(01)01337-611712664 Search in Google Scholar

13. Tytell, M., Hooper, P.L. (2001). Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 5(2): 267-287. https://doi.org/10.1517/14728222.5.2.267 PMid:1599218010.1517/14728222.5.2.26715992180 Search in Google Scholar

14. Chen, H.S., Jia, J., Hou-Fen, S., et al. (2006). Downregulation of the constitutively expressed Hsc70 in diabetic myocardium is mediated by insulin deficiency. J Endocrin. 190(2): 433-440. https://doi.org/10.1677/joe.1.06692 PMid:1689957610.1677/joe.1.0669216899576 Search in Google Scholar

15. Jafarnejad, А., Bathaie, S.Z., Nakhjavani, M., Hassan, M.Z. (2008). Investigation of the mechanisms involved in the high-dose and long-term acetyl salicylic acid therapy of type I diabetic rats. J Pharmacol Exp Ther. 324(2): 850-857. https://doi.org/10.1124/jpet.107.130914 PMid:1800016110.1124/jpet.107.13091418000161 Search in Google Scholar

16. Locke, M., Atance, J., (2000). The myocardial heat shock response following sodium salicylate treatment. Cell Stress Chaperones 5(4): 359-368. https://doi.org/10.1379/1466-1268(2000)005<0359:TMHSRF>2.0.CO;210.1379/1466-1268(2000)005<0359:TMHSRF>2.0.CO;2 Search in Google Scholar

17. Miova, B., Dinevska-Kjovkarovska, S., Esplugues, J.V., Apostolova, N. (2015). Heat stress induces extended plateau of Hsp70 accumulation - a possible cytoprotection mechanism in hepatic cells. J Cell Biochem. 116(10): 2365-2374. https://doi.org/10.1002/jcb.25187 PMid:2585736310.1002/jcb.25187 Search in Google Scholar

18. Lowry, O.H., Rosenbrough, J.N., Ffffarr, L.A., Rrandall, J.R. (1951). Protein measurement with the folin phenol reagent. J Boil Chem. 193(1): 265-275. https://doi.org/10.1016/S0021-9258(19)52451-610.1016/S0021-9258(19)52451-6 Search in Google Scholar

19. Keppler, D., Decker, K. (1974). Glycogen determination with amyloglucosidase. In: Hans Ulrich Bergmeyer, in collaboration with Karlfried Gawehn (Eds.), Methods of enzymatic analysis, vol. 3 (pp. 1127-1131). New York: Academic Press Search in Google Scholar

20. Stalmans, W., Wuif, H., Hue, L., Hers, H.G. (1974). The sequential inactivation of glycogen phosphorylase and activation of glycogen syntethase after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 41(1): 127-134. https://doi.org/10.1111/j.1432-1033.1974.tb03252.x PMid:436128310.1111/j.1432-1033.1974.tb03252.x Search in Google Scholar

21. Bontemps, F., Hue, L., Hers, H.G. (1978). Phosphorylation of glucose in isolated hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 174(2): 603-611. https://doi.org/10.1042/bj1740603 PMid:213056 PMCid:PMC118595310.1042/bj1740603 Search in Google Scholar

22. Bergmeyer, U., Michal, G. (1974). Methods of enzymatic analysis. Vol 1. New York: Academic Press Search in Google Scholar

23. Fiske, C.H., Subbarow, Y. (1925). The colorimetric determination of phosphorus. J Biol Chem. 66, 375-400. https://doi.org/10.1016/S0021-9258(18)84756-110.1016/S0021-9258(18)84756-1 Search in Google Scholar

24. Dimitrovska, M., Dervisevik, M., Cipanovska, N., Gerazova, K., Dinevska- Kjovkarovska. S., Miova, B. (2018). Physiological and pharmacological inductors of HSP70 enhance the antioxidative defense mechanisms of the liver and pancreas in diabetic rats. Can J Physiol Pharmacol. 96(2): 158-164. https://doi.org/10.1139/cjpp-2017-0394 PMid:2902844110.1139/cjpp-2017-039429028441 Search in Google Scholar

25. Dervisevik, M., Dimitrovska, M., Cipanovska, N., Dinevska-Kjovkarovska, S., Miova, B. (2019). Heat preconditioning and aspirin treatment attenuate hepatic carbohydrate- related disturbances in diabetic rats. J Therm Biol. 79, 190-198. https://doi.org/10.1016/j.jtherbio.2018.12.005 PMid:3061267910.1016/j.jtherbio.2018.12.00530612679 Search in Google Scholar

26. Donnelly, T.J., Sievers, R.E., Vissern, F.L., Welch, W.J., Wolfe, C.L. (1992). Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation. 85(2): 769-778. https://doi.org/10.1161/01.CIR.85.2.769 PMid:173516910.1161/01.CIR.85.2.7691735169 Search in Google Scholar

27. Kurucz, I., Morva, A., Vaag, A., et al. (2002). Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51(4): 1102-1109. https://doi.org/10.2337/diabetes.51.4.1102 PMid:1191693210.2337/diabetes.51.4.110211916932 Search in Google Scholar

28. Desrois, M., Sidell, R.J., Gauguier, D., King, L.M., Radda, G.K., Clarkeet, K. (2004). Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res. 61(2): 288-296. https://doi.org/10.1016/j.cardiores.2003.11.021 PMid:1473654510.1016/j.cardiores.2003.11.02114736545 Search in Google Scholar

29. Parker, G., Taylor, R., Jones, D., McClain, D. (2004). Hyperglycemia and inhibition of glycogen synthase in streptozotocin-induced mice. J Biol Chem. 279(20): 20636-20642. https://doi.org/10.1074/jbc.M312139200 PMid:1501407310.1074/jbc.M31213920015014073 Search in Google Scholar

30. Dolinsky, V.W., Dyck, J.R.B. (2006). Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol. 291(6): H2557-H2569. https://doi.org/10.1152/ajpheart.00329.2006 PMid:1684492210.1152/ajpheart.00329.200616844922 Search in Google Scholar

31. An, D., Rodrigues, B. (2006). Role of changes in cardiatic metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 291(4): H1489-H1506. https://doi.org/10.1152/ajpheart.00278.2006 PMid:1675129310.1152/ajpheart.00278.200616751293 Search in Google Scholar

32. Najemnikova, E., Rodgers, C.D., Locke, M. (2007). Altered heat stress response following streptozotocin-induced diabetes. Cell Stress Chaperones 12(4): 342-352. https://doi.org/10.1379/CSC-292.1 PMid:18229453 PMCid:PMC213479610.1379/CSC-292.1213479618229453 Search in Google Scholar

33. Marber, M.S., Walker, J.M., Latchman, D.S., Yellon, D.M. (1994). Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J Clin Invest. 93(3): 1087-1094. https://doi.org/10.1172/JCI117059 PMid:8132747 PMCid:PMC29404610.1172/JCI1170592940468132747 Search in Google Scholar

34. Koo, H.N., Oh, S.Y., Kang, K., Moon, D.Y., Kim, H.D., Kang, H.S. (2000). Modulation of HSP70 and HSP90 expression by sodium salicylate and aspirin in fish cell line CHSE-214. Zool Sci. 17(9): 1275-1282. https://doi.org/10.2108/zsj.17.127510.2108/zsj.17.1275 Search in Google Scholar

35. Zhang, X., Qian, Z., Zhu, H., Tang, S., Wu, D., Zhang, M., Kemper, N., Hartung, J., Bao, E. (2016). HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress. Br Poult Sci. 57(4): 462-473. https://doi.org/10.1080/00071668.2016.1174978 PMid:2708857510.1080/00071668.2016.117497827088575 Search in Google Scholar

36. Coe, L.M., Denison, J.D., McCabe, L.R. (2011). Low dose aspirin therapy decreases blood glucose levels but does not prevent type I diabetes-induced bone loss. Cell Physiol Biochem. 28(5): 923-932. https://doi.org/10.1159/000335806 PMid:22178944 PMCid:PMC370917610.1159/000335806370917622178944 Search in Google Scholar

37. Martha, S., Veldandi, U.K., Devarakonda, К.R., Pantam, N., Thungathurthi, S., Reddy, Y.N. (2009). Protective effective of aspirin in relation to IGF-1 in streptozotocin induced type-II diabetic rats. Int J Endocrinol Metab. 7(1): 20-25. Search in Google Scholar

eISSN:
1857-7415
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine