Accesso libero

Bovine Whey Supplementation in a High-Fat Diet Fed Rats Alleviated Offspring’s Cardiac Injury

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Hoffman, D.J., Powell, T.L., Barrett, E.S., Hardy, D.B. (2021). Developmental origins of metabolic diseases. Physiol Rev. 101(3): 739-795. https://doi.org/10.1152/physrev.00002.2020 PMid:3327053410.1152/physrev.00002.2020Search in Google Scholar

2. Siddeek, B., Mauduit, C., Chehade, H., Blin, G., Liand, M., Chindamo, M. et al. (2019). Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov. 5, 71. https://doi.org/10.1038/s41420-019-0153-y PMid:30854230 PMCid:PMC639728010.1038/s41420-019-0153-ySearch in Google Scholar

3. Mdaki, K.S., Larsen, T.D., Wachal, A.L., Schimelpfenig, M.D., Weaver, L.J., Dooyema, S.D. et al. (2016). Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 310, H681-H692. https://doi.org/10.1152/ajpheart.00795.2015 PMid:26801311 PMCid:PMC486734510.1152/ajpheart.00795.2015Search in Google Scholar

4. Dunn, G.A., Bale, T.L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11): 4999-5009. https://doi.org/10.1210/en.2009-0500 PMid:19819967 PMCid:PMC277599010.1210/en.2009-0500Search in Google Scholar

5. Ferey, J.L.A., Boudoures, A.L., Reid, M., Drury, A., Scheaffer, S., Modi, Z. et al. (2019). A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial dysfunction independently of maternal mitochondrial inheritance. Am J Physiol Heart Circ Physiol. 316(5): H1202-H1210. https://doi.org/10.1152/ajpheart.00013.2019 PMid:30901280 PMCid:PMC658038810.1152/ajpheart.00013.2019Search in Google Scholar

6. Chatterton, D.E.W., Smithers, G., Roupas, P., Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing. Int Dairy J. 16(11): 1229-1240. https://doi.org/10.1016/j.idairyj.2006.06.00110.1016/j.idairyj.2006.06.001Search in Google Scholar

7. Krissansen, G.W. (2007). Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr. 26(6): 713S-723S. https://doi.org/10.1080/07315724.2007.10719652 PMid:1818743810.1080/07315724.2007.10719652Search in Google Scholar

8. El-Sayyad, H.I., El-Ghawet, H.A., El-Bayomi, K.S., Emara, E. (2020). Bovine whey improved the myocardial and lung damage of mother rats fed on a high fat diet. Stud Stem Cells Res Ther. 6(1): 001-008. https://doi.org/10.17352/sscrt.00001410.17352/sscrt.000014Search in Google Scholar

9. Kandil, N.T.A.H. Sabry, D.A.M., Ashry, N.E.E., El-Sayyad, H.I.H. (2020). Therapeutic potential of whey against aging related cytological damage of adenohypophysis of rat. East African Scholars J Agri Life Sci. 3(9): 304-310. https://doi.org/10.36349/EASJALS.2020.v03i09.00210.36349/EASJALS.2020.v03i09.002Search in Google Scholar

10. Sasaki, Y.F., Nishidate, E., Izumiyama, F., Matsusaka, N., Tsuda, S. (1997). Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs. Mutat Res. 391(3): 215-231. https://doi.org/10.1016/S1383-5718(97)00073-910.1016/S1383-5718(97)00073-9Search in Google Scholar

11. Deeg, R., Ziegenhorn, J. (1983). Kinetic enzymic method for automated determination of total cholesterol in serum. Clin Chem. 29(10): 1798-1802. https://doi.org/10.1093/clinchem/29.10.1798 PMid:657798110.1093/clinchem/29.10.1798Search in Google Scholar

12. Fossati, P., Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that proceduces hydrogen peroxide. Clin Chem. 28(10): 2077-2080. https://doi.org/10.1093/clinchem/28.10.2077 PMid:681298610.1093/clinchem/28.10.2077Search in Google Scholar

13. Grove, T.H. (1979). Effect of reagent PH on determination of the high-density lipoprotein cholesterol by precipitation with sodium phototungestate-magnesium. Clin Chem. 25(4): 560-564. https://doi.org/10.1093/clinchem/25.4.560 PMid:3801810.1093/clinchem/25.4.560Search in Google Scholar

14. Friedewald, W.T., Levy, R.I., Fredrickson, D.S. (1972). Estimation of low density lipoprotein cholesterol in plasma without use preparative ultracentri-fuge. Clin Chem. 18(6): 499-502. https://doi.org/10.1093/clinchem/18.6.499 PMid:433738210.1093/clinchem/18.6.499Search in Google Scholar

15. Niskikimi, M., Rao, N., Yaki, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem Biophys Res Commun. 46(2): 849-854. https://doi.org/10.1016/S0006-291X(72)80218-310.1016/S0006-291X(72)80218-3Search in Google Scholar

16. Bock, P.P., Kramer, R., Pavelka, M. (1980). Peroxisomes and related particles. In M. Alfert, W. Beermann, L. Goldstein, K.R. Porter, P. Sitte (Eds.), Cell Biology Monographs 7 (pp. 44-74). Springer, Berlin https://doi.org/10.1007/978-3-7091-2055-2_210.1007/978-3-7091-2055-2_2Search in Google Scholar

17. Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95(2): 351-358. https://doi.org/10.1016/0003-2697(79)90738-310.1016/0003-2697(79)90738-3Search in Google Scholar

18. Ribaroff, G.A., Wastnedge, E., Drake, A.J., Sharpe, R.M., Chambers, T.J.G. (2017). Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev. 18(6): 673-686. https://doi.org/10.1111/obr.12524 PMid:28371083 PMCid:PMC543491910.1111/obr.12524543491928371083Search in Google Scholar

19. Butruille, L., Marousez, L., Pourpe, C., Oger, F., Lecoutre, S., Catheline, D. et al. (2019). Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes (Lond). 43(12): 2381-2393. https://doi.org/10.1038/s41366-018-0310-z PMid:3062231210.1038/s41366-018-0310-z30622312Search in Google Scholar

20. Guzzardi, M.A., Liistro, T., Gargani, L., Ait Ali, L., D’Angelo, G., Rocchiccioli, S. et al. (2018). Maternal obesity and cardiac development in the offspring: Study in human neonates and minipigs. JACC Cardiovasc Imaging. 11(12): 1750-1755. https://doi.org/10.1016/j.jcmg.2017.08.024 PMid:2915356810.1016/j.jcmg.2017.08.02429153568Search in Google Scholar

21. Giacco, F., Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ Res. 107(9): 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545 PMid:21030723 PMCid:PMC299692210.1161/CIRCRESAHA.110.223545299692221030723Search in Google Scholar

22. Magalhães, D.A., Kume, W.T., Correia, F.S., Queiroz, T.S., Allebrandt Neto, E.W., Santos, M.P.D. et al. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. An Acad Bras Cienc. 91(1): e20180314. https://doi.org/10.1590/0001-3765201920180314 PMid:3091615710.1590/0001-376520192018031430916157Search in Google Scholar

23. Xiang, L., Zhang, Q., Chi, C., Wu, G., Lin, Z., Li, J. et al. (2020). Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of high-fat-diet and streptozotocin-induced diabetic rats. Diabetol Metab Syndr. 12, 1. https://doi.org/10.1186/s13098-019-0485-z PMid:31921358 PMCid:PMC694790210.1186/s13098-019-0485-z694790231921358Search in Google Scholar

24. Attia, H.M., Taha, M. (2018). Protective effect of captopril on cardiac fibrosis in diabetic albino rats: a histological and immunohistochemical study. Benha Med J. 35(3): 378-385. https://doi.org/10.4103/bmfj.bmfj_122_1810.4103/bmfj.bmfj_122_18Search in Google Scholar

25. Sheen, J.M., Yu, H.R., Tain, Y.L., Tsai, W.L., Tiao, M.M., Lin, I.C., Tsai, C.C., Lin, Y.L., Huang, L.T. (2018). Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study. Sci Rep. 8(1): 5607. https://doi.org/10.1038/s41598-018-24010-0 PMid:29618822 PMCid:PMC588480110.1038/s41598-018-24010-0588480129618822Search in Google Scholar

26. Dasgupta, A., Chow, L., Wells, A., Datta, P. (2001). Effect of elevated concentration of alkaline phosphatase on cardiac troponin I assays. J Clin Lab Anal. 15(4): 175-177. https://doi.org/10.1002/jcla.1023 PMid:11436198 PMCid:PMC680791210.1002/jcla.1023680791211436198Search in Google Scholar

27. You, A.H., Han, D.W., Ham, S.Y., Lim, W., Song, Y. (2019). Serum alkaline phosphatase as predictor of cardiac and cerebrovascular complications after lumbar spinal fusion surgery in elderly: A retrospective study. J Clin Med. 8(8): 1111. https://doi.org/10.3390/jcm8081111 PMid:31357535 PMCid:PMC672367710.3390/jcm8081111672367731357535Search in Google Scholar

28. Al-Gebaly, A.S. (2019). Ameliorating role of whey syrup against ageing- related damage of myocardial muscle of Wistar Albino rats. Saudi J Biol Sci. 26(5): 950-956. https://doi.org/10.1016/j.sjbs.2018.03.014 PMid:31303824 PMCid:PMC660059110.1016/j.sjbs.2018.03.014660059131303824Search in Google Scholar

29. Martin, M., Kopaliani, I., Jannasch, A., Mund, C., Todorov, V., Henle, T. et al. (2015). Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate. Acta Physiol (Oxf). 215(4): 167-176. https://doi.org/10.1111/apha.12578 PMid:2629792810.1111/apha.1257826297928Search in Google Scholar

30. El-Shinnawy, N.A., Abd Elhalem, S.S., Haggag, N.Z., Badr, G. (2018). Ameliorative role of camel whey protein and rosuvastatin on induced dyslipidemia in mice. Food Funct. 9(2): 1038-1047. https://doi.org/10.1039/C7FO01871A PMid:2934944610.1039/C7FO01871A29349446Search in Google Scholar

31. Bartfay, W.J., Davis, M.T., Medves, J.M., Lugowski, S. (2003). Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy. Can J Cardiol. 19(10): 1163-1168.Search in Google Scholar

32. Mann, P.E., Huynh, K., Widmer, G. (2018). Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes. 9(2): 143-154. https://doi.org/10.1080/19490976.2017.1395122 PMid:29135334 PMCid:PMC598979310.1080/19490976.2017.1395122598979329135334Search in Google Scholar

33. Pace, R.M., Prince, A.L., Ma, J., Belfort, B.D.W., Harvey, A.S., Hu, M. et al. (2018). Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiol. 18, 28. https://doi.org/10.1186/s12866-018-1169-9 PMid:29621980 PMCid:PMC588720110.1186/s12866-018-1169-9588720129621980Search in Google Scholar

eISSN:
1857-7415
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine