This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
COM(2020) 662 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Renovation Wave for Europe – Greening Our Buildings, Creating Jobs, Improving Lives. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1603122220757&uri=CELEX:52020DC0662Search in Google Scholar
Bello, K.O., & Yan, N. (2024). Mechanical and Insulation Performance of Rigid Polyurethane Foam Reinforced with Lignin-Containing Nanocellulose Fibrils. Polymers, 16, 2119. DOI:10.3390/polym16152119Search in Google Scholar
Ye, Y. (2018). The Development of Polyurethane. Materials Science Materials Review. DOI:10.18063/msmr.v1i1.507Search in Google Scholar
Rutkowski, P., Kwiecień, K., Berezicka, A., Sułowska, J., Kwiecień, A., Śliwa-Wieczorek, K., … & Szumera, M. (2024). Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures. Molecules, 29, 3337. DOI:10.3390/molecules29143337Search in Google Scholar
Amundarain, I., Miguel-Fernández, R., Asueta, A., García-Fernández, S., & Arnaiz, S. (2022). Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams. Polymers, 14, 1157. DOI:10.3390/polym14061157Search in Google Scholar
Borrero-López, A.M., Nicolas, V., Marie, Z., Celzard, A., & Fierro, V. A. (2022). Review of Rigid Polymeric Cellular Foams and Their Greener Tannin-Based Alternatives. Polymers, 14, 3974. DOI:10.3390/polym14193974Search in Google Scholar
Chaudhari, D.M., Stoliarov, S.I., Beach, M.W., & Suryadevara, K.A. (2021). Polyisocyanurate Foam Pyrolysis and Flame Spread Modeling. Appl. Sci. 11, 3463. DOI:10.3390/app11083463Search in Google Scholar
Mayer-Trzaskowska, P., Robakowska, M., Gierz, Ł., Pach, J., & Mazur, E. (2024). Observation of the Effect of Aging on the Structural Changes of Polyurethane/Polyurea Coatings. Polymers, 16, 23. DOI:10.3390/polym16010023Search in Google Scholar
Baillis, D., & Coquard, R. (2008). Radiative and conductive thermal properties of foams. In A. Öchsner, G. E. Murch, & M. J. S. De Lemos (Eds.), Cellular and Porous Materials: Thermal Properties Simulation and Prediction, 343–384. DOI:10.1002/9783527621408.ch11Search in Google Scholar
Biswas, K., Desjarlais, A., Smith, D., Letts, J., Yao, J., & Jiang, T. (2018). Development and Thermal Performance Verification of Composite Insulation Boards Containing Foam-Encapsulated Vacuum Insulation Panels. Appl. Energy, 228, 1159–1172. DOI:10.1016/j.apenergy.2018.06.136Search in Google Scholar
Federation of European Rigid Polyurethane Foam Associations. (2006). Thermal Insulation Materials Made of Rigid Polyurethane Foam (PUR/PIR), report No. 1.Search in Google Scholar
Makaveckas, T., Bliūdžius, R., & Burlingis, A. (2021). Determination of the Impact of Environmental Temperature on the Thermal Conductivity of Polyisocyanurate (PIR) Foam Products. Journal of Building Engineering, 41. DOI:10.1016/j. jobe.2021.102447Search in Google Scholar
Molleti, S., & Van Reenen, D. (2022). Effect of Temperature on Long-Term Thermal Conductivity of Closed-Cell Insulation Materials. Buildings, 12, 425. DOI:10.3390/buildings12040425Search in Google Scholar
Torres‐Regalado, P., Santiago-Calvo, M., Gimeno, J., & Rodríguez-Pérez, M. (2023). Thermal Conductivity Aging and Mechanical Properties of Polyisocyanurate (PIR) Foams Produced with Different Contents of HFO. Journal of Applied Polymer Science, 140 (40), 1–14. DOI: 10.1002/app.54504Search in Google Scholar
Berardi, U., & Naldi, M. (2017). The Impact of the Temperature Dependent Thermal Conductivity of Insulating Materials on the Effective Building Envelope Performance. Energy and Buildings, 144 (1), 262–275. DOI:0.1016/j.enbuild.2017.03.052Search in Google Scholar
EN13165:2012+A2:2016. Thermal Insulation Products For Buildings - Factory Made Rigid Polyurethane Foam (PU) Products – Specification. Available at: https://standards.iteh.ai/catalog/standards/cen/7820b9dccc59-44dd-96e5-3122bdf21edf/en-13165-2012a2-2016Search in Google Scholar
ISO 10211:2017. Thermal Bridges in Building Construction – Heat Flows and Surface Temperatures – Detailed Calculations. Available at: https://www.iso.org/standard/65710.htmlSearch in Google Scholar
Finnfoam. (n.d.). Roof Insulation. Available at: https://finnfoam.net/resenija/#izoljacijakrysi-i-uteplenieSearch in Google Scholar
Steineck, S., & Lange, J. (2024). Material Behavior of PIR Rigid Foam in Sandwich Panels: Studies beyond Construction Industry Standard. Materials, 17, 418. DOI:10.3390/ma17020418Search in Google Scholar
Tenaxpanel. (n.d.). PIR Sandwich Panels. Available at: https://tenaxpanel.lv/en/pirpur-sandwich-panels/Search in Google Scholar