Accesso libero

An Efficiency Study of Foamed Polyisocyanurate (PIR) Materials as Building Insulators

, , , ,  e   
26 mar 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

COM(2020) 662 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Renovation Wave for Europe – Greening Our Buildings, Creating Jobs, Improving Lives. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1603122220757&uri=CELEX:52020DC0662 Search in Google Scholar

Bello, K.O., & Yan, N. (2024). Mechanical and Insulation Performance of Rigid Polyurethane Foam Reinforced with Lignin-Containing Nanocellulose Fibrils. Polymers, 16, 2119. DOI:10.3390/polym16152119 Search in Google Scholar

Ye, Y. (2018). The Development of Polyurethane. Materials Science Materials Review. DOI:10.18063/msmr.v1i1.507 Search in Google Scholar

Rutkowski, P., Kwiecień, K., Berezicka, A., Sułowska, J., Kwiecień, A., Śliwa-Wieczorek, K., … & Szumera, M. (2024). Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures. Molecules, 29, 3337. DOI:10.3390/molecules29143337 Search in Google Scholar

Amundarain, I., Miguel-Fernández, R., Asueta, A., García-Fernández, S., & Arnaiz, S. (2022). Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams. Polymers, 14, 1157. DOI:10.3390/polym14061157 Search in Google Scholar

Borrero-López, A.M., Nicolas, V., Marie, Z., Celzard, A., & Fierro, V. A. (2022). Review of Rigid Polymeric Cellular Foams and Their Greener Tannin-Based Alternatives. Polymers, 14, 3974. DOI:10.3390/polym14193974 Search in Google Scholar

Chaudhari, D.M., Stoliarov, S.I., Beach, M.W., & Suryadevara, K.A. (2021). Polyisocyanurate Foam Pyrolysis and Flame Spread Modeling. Appl. Sci. 11, 3463. DOI:10.3390/app11083463 Search in Google Scholar

Mayer-Trzaskowska, P., Robakowska, M., Gierz, Ł., Pach, J., & Mazur, E. (2024). Observation of the Effect of Aging on the Structural Changes of Polyurethane/Polyurea Coatings. Polymers, 16, 23. DOI:10.3390/polym16010023 Search in Google Scholar

Baillis, D., & Coquard, R. (2008). Radiative and conductive thermal properties of foams. In A. Öchsner, G. E. Murch, & M. J. S. De Lemos (Eds.), Cellular and Porous Materials: Thermal Properties Simulation and Prediction, 343–384. DOI:10.1002/9783527621408.ch11 Search in Google Scholar

Biswas, K., Desjarlais, A., Smith, D., Letts, J., Yao, J., & Jiang, T. (2018). Development and Thermal Performance Verification of Composite Insulation Boards Containing Foam-Encapsulated Vacuum Insulation Panels. Appl. Energy, 228, 1159–1172. DOI:10.1016/j.apenergy.2018.06.136 Search in Google Scholar

Federation of European Rigid Polyurethane Foam Associations. (2006). Thermal Insulation Materials Made of Rigid Polyurethane Foam (PUR/PIR), report No. 1. Search in Google Scholar

Makaveckas, T., Bliūdžius, R., & Burlingis, A. (2021). Determination of the Impact of Environmental Temperature on the Thermal Conductivity of Polyisocyanurate (PIR) Foam Products. Journal of Building Engineering, 41. DOI:10.1016/j. jobe.2021.102447 Search in Google Scholar

Molleti, S., & Van Reenen, D. (2022). Effect of Temperature on Long-Term Thermal Conductivity of Closed-Cell Insulation Materials. Buildings, 12, 425. DOI:10.3390/buildings12040425 Search in Google Scholar

Torres‐Regalado, P., Santiago-Calvo, M., Gimeno, J., & Rodríguez-Pérez, M. (2023). Thermal Conductivity Aging and Mechanical Properties of Polyisocyanurate (PIR) Foams Produced with Different Contents of HFO. Journal of Applied Polymer Science, 140 (40), 1–14. DOI: 10.1002/app.54504 Search in Google Scholar

Berardi, U., & Naldi, M. (2017). The Impact of the Temperature Dependent Thermal Conductivity of Insulating Materials on the Effective Building Envelope Performance. Energy and Buildings, 144 (1), 262–275. DOI:0.1016/j.enbuild.2017.03.052 Search in Google Scholar

EN13165:2012+A2:2016. Thermal Insulation Products For Buildings - Factory Made Rigid Polyurethane Foam (PU) Products – Specification. Available at: https://standards.iteh.ai/catalog/standards/cen/7820b9dccc59-44dd-96e5-3122bdf21edf/en-13165-2012a2-2016 Search in Google Scholar

ISO 10211:2017. Thermal Bridges in Building Construction – Heat Flows and Surface Temperatures – Detailed Calculations. Available at: https://www.iso.org/standard/65710.html Search in Google Scholar

Finnfoam. (n.d.). Roof Insulation. Available at: https://finnfoam.net/resenija/#izoljacijakrysi-i-uteplenie Search in Google Scholar

Steineck, S., & Lange, J. (2024). Material Behavior of PIR Rigid Foam in Sandwich Panels: Studies beyond Construction Industry Standard. Materials, 17, 418. DOI:10.3390/ma17020418 Search in Google Scholar

Tenaxpanel. (n.d.). PIR Sandwich Panels. Available at: https://tenaxpanel.lv/en/pirpur-sandwich-panels/ Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Fisica, Fisica tecnica ed applicata