This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Kirby, R. (2011). Minimising Harbour Siltation-findings of PIANC Working Group 43. Ocean Dynamics, 61 (2–3), 233–244. https://doi.org/10.1007/s10236-010-0336-9Search in Google Scholar
Lojek, O., Goseberg, N., & Schlurmann, T. (2021). Projecting Hydro-Morphodynamic Impacts of Planned Layout Changes for a Coastal Harbor. Journal of Waterway, Port, Coastal and Ocean Engineering, 147 (6), 05021013. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000666Search in Google Scholar
Kuang, C. P., Li, H. Y., Huang, G. W., Han, X. J., Zou, Q. P., & Song, H. L. (2022). Sediment Transport and Morphological Responses of a Silty Coast to a Cold Front Event in the Southwest Bohai Bay of China. Estuarine, Coastal and Shelf Science, 278, 108106. https://doi.org/10.1016/j.ecss.2022.108106Search in Google Scholar
Diab, H., Younes, R., & Lafon, P. (2017). Survey of Research on the Optimal Design of Sea Harbours. International Journal of Naval Architecture and Ocean Engineering, 9 (4), 460–472. https://doi.org/10.1016/j.ijnaoe.2016.12.004Search in Google Scholar
Bell, M. G. H., Pan, J. J., Teye, C., Cheung, K. F., & Perera, S. (2020). An Entropy Maximizing Approach to the Ferry Network Design Problem. Transportation Research Part B-Methodological, 132, 15–28. https://doi.org/10.1016/j.trb.2019.02.006Search in Google Scholar
Männikus, R., Soomere, T., & Najafzadeh, F. (2022). Refraction May Redirect Waves from Multiple Directions into a Harbour: A Case Study in the Gulf of Riga, Eastern Baltic Sea. Estonian Journal of Earth Sciences, 71 (2), 80−88. https://doi.org/10.3176/earth.2022.06Search in Google Scholar
Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Viška, M., & Soomere, T. (2024). Spatiotemporal Variability of Wave Climate in the Gulf of Riga. Oceanologia. Early access. https://doi.org/10.1016/j.oceano.2023.11.001.Search in Google Scholar
Soomere, T. (2003). Anisotropy of Wind and Wave Regimes in the Baltic Proper. Journal of Sea Research, 49 (4), 305–316. https://doi.org/10.1016/S1385-1101(03)00034-0Search in Google Scholar
Männikus, R., Soomere, T., & Kudryavtseva, N. (2019). Identification of Mechanisms that Drive Water Level Extremes from In Situ Measurements in the Gulf of Riga during 1961−2017. Continental Shelf Research, 182, 22−36. https://doi.org/10.1016/j.csr.2019.05.014.Search in Google Scholar
Hanes, D.M., Erikson, & L.H. (2013). The Significance of Ultra-Refracted Surface Gravity Waves on Sheltered Coasts, with Application to San Francisco Bay. Estuarine, Coastal and Shelf Science, 133, 129–136. https://doi.org/10.1016/j.ecss.2013.08.022Search in Google Scholar
Orviku K. (2018). Rannad ja rannikud [Beaches and Shores]. Tallinn University Publishers. [in Estonian].Search in Google Scholar
Karimpour, A. (2013). OCEANLYZ, Ocean Wave Analyzing Toolbox. User Manual. Available at http://www.arashkarimpour.com/download.htmlSearch in Google Scholar
Alari, V., Björkqvist, J.-V., Kaldvee, Mölder, K., Rikka, S., Kask-Korb, A., … & Tõnisson, H. (2022). LainePoiss®—A Lightweight and Ice-Resistant Wave Buoy. Journal of Atmospheric and Oceanic Technology, 39 (5), 573–594. https://doi.org/10.1175/JTECH-D-21-0091.1Search in Google Scholar
Eelsalu, M., Org, M., & Soomere, T. (2014). Visually observed wave climate in the Gulf of Riga. In The 6th IEEE/OES Baltic Symposium Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26–29, Tallinn, Estonia. IEEE Conference Publications, 6887829. https://doi.org/10.1109/BALTIC.2014.6887829Search in Google Scholar
Booij, N., Ris, R.C., & Holthuijsen, L.H. (1999). A Third-Generation Wave Model For Coastal Regions: 1. Model Description and Validation. Journal of Geophysical Research-Oceans, 104 (C4), 7649–7666. https://doi.org/10.1029/98JC02622.Search in Google Scholar
The SWAN team. (2021). SWAN Scientific and Technical Documentation. Technical Report. Delft University of Technology. Available at http://swanmodel.sourceforge.net/download/zip/swantech.pdfSearch in Google Scholar
Baltic Sea Hydrographic Commission. (2013). Baltic Sea Bathymetry Database Version 0.9.3. Available at http://data.bshc.pro/Search in Google Scholar
Shore Protection Manual. (1984). Coastal Engineering Research Center. Department of the Army. US Army Corps of Engineers, Washington DC.Search in Google Scholar
Kamphuis, J.W. (2010). Introduction to Coastal Engineering and Management (2nd ed.). Advanced Series of Ocean Engineering, 30. World Scientific, New Jersey. https://doi.org/10.1142/7021Search in Google Scholar
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., … & Thépaut, J-N. (2018). ERA5 Hourly Data on Pressure Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available at https://doi.org/10.24381/cds.bd0915c6Search in Google Scholar
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., … & Thepaut, J. N. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803Search in Google Scholar
ECMWF. (2006). IFS Documentation – Cy41r2. Operational Implementation 8 March 2016. Part IV: Physical Processes. Available at https://www.ecmwf.int/en/elibrary/79697-ifSearch in Google Scholar
Soomere, T., & Keevallik, S. (2001). Anisotropy of Moderate and Strong Winds in the Baltic Proper. Proceeding of the Estonian Academy of Sciences. Engineering, 7 (1), 35–49. https://doi.org/10.3176/eng.2001.1.04Search in Google Scholar
Männikus, R., Soomere, T., & Viška, M. (2020). Variations in the Mean, Seasonal and Extreme Water Level on the Latvian Coast, the Eastern Baltic Sea, during 1961–2018. Estuarine, Coastal and Shelf Science, 245, 106827. https://doi.org/10.1016/j.ecss.2020.106827Search in Google Scholar
Coles, S. (2004). An Introduction to Statistical Modeling of Extreme Values (3rd printing). Springer, London.Search in Google Scholar
Holthuijsen, L. H. (1999). Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge.Search in Google Scholar
Männikus, R., & Soomere, T. (2023). Directional Variation of Return Periods of Water Level Extremes in Moonsund and in the Gulf of Riga. Baltic Sea. Regional Studies in Marine Science, 57, 102741. https://doi.org/10.1016/j.rsma.2022.102741Search in Google Scholar
Wang, W., Pákozdi, C., Kamath, A., Fouques, S., & Bihs, H. (2022). A Flexible Fully Nonlinear Potential Flow Model for Wave Propagation over the Complex Topography of the Norwegian Coast. Applied Ocean Research, 122, 103103. https://doi.org/10.1016/j.apor.2022.103103Search in Google Scholar
Wang, W., Pákozdi, C., Kamath, A., & Bihs, H. (2023). Fully Nonlinear Phase-Resolved Wave Modelling in the Norwegian Fjords for Floating Bridges along the E39 Coastal Highway. Journal of Ocean Engineering and Marine Energy, 9, 567–586. https://doi.org/10.1007/s40722-023-00284-zSearch in Google Scholar
Bihs, H., Kamath, A., Alagan Chella, M., Aggarwal, A., & Arntsen, Ø. A. (2016). A New Level Set Numerical Wave Tank with Improved Density Interpolation for Complex Wave Hydrodynamics. Computers & Fluids, 140, 191–208. https://doi.org/10.1016/j.compfluid.2016.09.012Search in Google Scholar
Van der Vorst, H. (1992). BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal of Scientific Computing, 13 (2), 631–644. https://doi.org/10.1137/0913035Search in Google Scholar
Jiang, G. S., & Shu, C. W. (1996). Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126 (1), 202–228. https://doi.org/10.1006/jcph.1996.0130Search in Google Scholar
Shu, C.W., & Osher, S. (1988). Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes. Journal of Computational Physics, 77 (2), 439–471. https://doi.org/10.1016/0021-9991(88)90177-5Search in Google Scholar
Larsen, J., & Dancy, H. (1983). Open Boundaries in Short Wave Simulations – A New Approach. Coastal Engineering, 7 (3), 285–297. https://doi.org/10.1016/0378-3839(83)90022-4Search in Google Scholar
Mazzaretto, O.M., Menéndez, M., & Lobeto, H. (2022). A Global Evaluation of the JONSWAP Spectra Suitability on Coastal Areas. Ocean Engineering, 266 (2), 112756. https://doi.org/10.1016/j.oceaneng.2022.112756.Search in Google Scholar
Eelsalu, M., Soomere, T., Pindsoo, K., & Lagemaa, P. (2014). Ensemble Approach for Projections of Return Periods of Extreme Water Levels in Estonian Waters. Continental Shelf Research, 91, 201–210. https://doi.org/10.1016/j.csr.2014.09.012Search in Google Scholar
Johansson, M., Boman, H., Kahma, K. K., & Launiainen, J. (2001). Trends in Sea Level Variability in the Baltic Sea. Boreal Environment Research, 6 (3), 159–179.Search in Google Scholar
Soomere, T., & Pindsoo, K. (2016). Spatial Variability in the Trends in Extreme Storm Surges and Weekly-Scale High Water Levels in the Eastern Baltic Sea. Continental Shelf Research, 115, 53–64. https://doi.org/10.1016/j.csr.2015.12.016Search in Google Scholar
Kozanis, S., Christofides, A., Mamassis, N., Efstratiadis, A., & Koutsoyiannis, D. (2010). Hydrognomon – Open Source Software for the Analysis of Hydrological Data. Geophysical Research Abstracts, 12, 12419. http://dx.doi.org/10.13140/RG.2.2.21350.83527Search in Google Scholar
Goda, Y. (2010). Random Seas and Design of Maritime Structures (3rd ed.). Advanced Series on Ocean Engineering 33. World Scientific, New Jersey. https://doi.org/10.1142/7425Search in Google Scholar
Männikus, T., Soomere, T., & Suursaar, Ü. (2024). How do Simple Wave Models Perform Compared with Sophisticated Models and Measurements in the Eastern Baltic Sea? Estonian Journal of Earth Sciences, 73 (2).Search in Google Scholar
Ranasinghe, R., & Turner, I. L. (2006). Shoreline Response to Submerged Structures: A Review. Coastal Engineering, 53 (1), 65–79. https://doi.org/10.1016/j.coastaleng.2005.08.003Search in Google Scholar
Fitri, A., Hashim, R., Abolfathi, S., & Maulud, K. N. A. (2019). Dynamics of Sediment Transport and Erosion-Deposition Patterns in the Locality of a Detached Low-Crested Breakwater on a Cohesive Coast. Water, 11 (8). https://doi.org/10.3390/w11081721Search in Google Scholar