Accesso libero

Modelling Suitable Layout for a Small Island Harbour: A Case Study of Ruhnu in the Gulf of Riga, Eastern Baltic Sea

, , , ,  e   
30 nov 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Kirby, R. (2011). Minimising Harbour Siltation-findings of PIANC Working Group 43. Ocean Dynamics, 61 (2–3), 233–244. https://doi.org/10.1007/s10236-010-0336-9 Search in Google Scholar

Lojek, O., Goseberg, N., & Schlurmann, T. (2021). Projecting Hydro-Morphodynamic Impacts of Planned Layout Changes for a Coastal Harbor. Journal of Waterway, Port, Coastal and Ocean Engineering, 147 (6), 05021013. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000666 Search in Google Scholar

Kuang, C. P., Li, H. Y., Huang, G. W., Han, X. J., Zou, Q. P., & Song, H. L. (2022). Sediment Transport and Morphological Responses of a Silty Coast to a Cold Front Event in the Southwest Bohai Bay of China. Estuarine, Coastal and Shelf Science, 278, 108106. https://doi.org/10.1016/j.ecss.2022.108106 Search in Google Scholar

Diab, H., Younes, R., & Lafon, P. (2017). Survey of Research on the Optimal Design of Sea Harbours. International Journal of Naval Architecture and Ocean Engineering, 9 (4), 460–472. https://doi.org/10.1016/j.ijnaoe.2016.12.004 Search in Google Scholar

Bell, M. G. H., Pan, J. J., Teye, C., Cheung, K. F., & Perera, S. (2020). An Entropy Maximizing Approach to the Ferry Network Design Problem. Transportation Research Part B-Methodological, 132, 15–28. https://doi.org/10.1016/j.trb.2019.02.006 Search in Google Scholar

Männikus, R., Soomere, T., & Najafzadeh, F. (2022). Refraction May Redirect Waves from Multiple Directions into a Harbour: A Case Study in the Gulf of Riga, Eastern Baltic Sea. Estonian Journal of Earth Sciences, 71 (2), 80−88. https://doi.org/10.3176/earth.2022.06 Search in Google Scholar

Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Viška, M., & Soomere, T. (2024). Spatiotemporal Variability of Wave Climate in the Gulf of Riga. Oceanologia. Early access. https://doi.org/10.1016/j.oceano.2023.11.001. Search in Google Scholar

Soomere, T. (2003). Anisotropy of Wind and Wave Regimes in the Baltic Proper. Journal of Sea Research, 49 (4), 305–316. https://doi.org/10.1016/S1385-1101(03)00034-0 Search in Google Scholar

Männikus, R., Soomere, T., & Kudryavtseva, N. (2019). Identification of Mechanisms that Drive Water Level Extremes from In Situ Measurements in the Gulf of Riga during 1961−2017. Continental Shelf Research, 182, 22−36. https://doi.org/10.1016/j.csr.2019.05.014. Search in Google Scholar

Hanes, D.M., Erikson, & L.H. (2013). The Significance of Ultra-Refracted Surface Gravity Waves on Sheltered Coasts, with Application to San Francisco Bay. Estuarine, Coastal and Shelf Science, 133, 129–136. https://doi.org/10.1016/j.ecss.2013.08.022 Search in Google Scholar

Orviku K. (2018). Rannad ja rannikud [Beaches and Shores]. Tallinn University Publishers. [in Estonian]. Search in Google Scholar

Karimpour, A. (2013). OCEANLYZ, Ocean Wave Analyzing Toolbox. User Manual. Available at http://www.arashkarimpour.com/download.html Search in Google Scholar

Alari, V., Björkqvist, J.-V., Kaldvee, Mölder, K., Rikka, S., Kask-Korb, A., … & Tõnisson, H. (2022). LainePoiss®—A Lightweight and Ice-Resistant Wave Buoy. Journal of Atmospheric and Oceanic Technology, 39 (5), 573–594. https://doi.org/10.1175/JTECH-D-21-0091.1 Search in Google Scholar

Eelsalu, M., Org, M., & Soomere, T. (2014). Visually observed wave climate in the Gulf of Riga. In The 6th IEEE/OES Baltic Symposium Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26–29, Tallinn, Estonia. IEEE Conference Publications, 6887829. https://doi.org/10.1109/BALTIC.2014.6887829 Search in Google Scholar

Booij, N., Ris, R.C., & Holthuijsen, L.H. (1999). A Third-Generation Wave Model For Coastal Regions: 1. Model Description and Validation. Journal of Geophysical Research-Oceans, 104 (C4), 7649–7666. https://doi.org/10.1029/98JC02622. Search in Google Scholar

The SWAN team. (2021). SWAN Scientific and Technical Documentation. Technical Report. Delft University of Technology. Available at http://swanmodel.sourceforge.net/download/zip/swantech.pdf Search in Google Scholar

Baltic Sea Hydrographic Commission. (2013). Baltic Sea Bathymetry Database Version 0.9.3. Available at http://data.bshc.pro/ Search in Google Scholar

Shore Protection Manual. (1984). Coastal Engineering Research Center. Department of the Army. US Army Corps of Engineers, Washington DC. Search in Google Scholar

Kamphuis, J.W. (2010). Introduction to Coastal Engineering and Management (2nd ed.). Advanced Series of Ocean Engineering, 30. World Scientific, New Jersey. https://doi.org/10.1142/7021 Search in Google Scholar

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., … & Thépaut, J-N. (2018). ERA5 Hourly Data on Pressure Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available at https://doi.org/10.24381/cds.bd0915c6 Search in Google Scholar

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., … & Thepaut, J. N. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803 Search in Google Scholar

ECMWF. (2006). IFS Documentation – Cy41r2. Operational Implementation 8 March 2016. Part IV: Physical Processes. Available at https://www.ecmwf.int/en/elibrary/79697-if Search in Google Scholar

Soomere, T., & Keevallik, S. (2001). Anisotropy of Moderate and Strong Winds in the Baltic Proper. Proceeding of the Estonian Academy of Sciences. Engineering, 7 (1), 35–49. https://doi.org/10.3176/eng.2001.1.04 Search in Google Scholar

Männikus, R., Soomere, T., & Viška, M. (2020). Variations in the Mean, Seasonal and Extreme Water Level on the Latvian Coast, the Eastern Baltic Sea, during 1961–2018. Estuarine, Coastal and Shelf Science, 245, 106827. https://doi.org/10.1016/j.ecss.2020.106827 Search in Google Scholar

Coles, S. (2004). An Introduction to Statistical Modeling of Extreme Values (3rd printing). Springer, London. Search in Google Scholar

Holthuijsen, L. H. (1999). Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge. Search in Google Scholar

Männikus, R., & Soomere, T. (2023). Directional Variation of Return Periods of Water Level Extremes in Moonsund and in the Gulf of Riga. Baltic Sea. Regional Studies in Marine Science, 57, 102741. https://doi.org/10.1016/j.rsma.2022.102741 Search in Google Scholar

Wang, W., Pákozdi, C., Kamath, A., Fouques, S., & Bihs, H. (2022). A Flexible Fully Nonlinear Potential Flow Model for Wave Propagation over the Complex Topography of the Norwegian Coast. Applied Ocean Research, 122, 103103. https://doi.org/10.1016/j.apor.2022.103103 Search in Google Scholar

Wang, W., Pákozdi, C., Kamath, A., & Bihs, H. (2023). Fully Nonlinear Phase-Resolved Wave Modelling in the Norwegian Fjords for Floating Bridges along the E39 Coastal Highway. Journal of Ocean Engineering and Marine Energy, 9, 567–586. https://doi.org/10.1007/s40722-023-00284-z Search in Google Scholar

Bihs, H., Kamath, A., Alagan Chella, M., Aggarwal, A., & Arntsen, Ø. A. (2016). A New Level Set Numerical Wave Tank with Improved Density Interpolation for Complex Wave Hydrodynamics. Computers & Fluids, 140, 191–208. https://doi.org/10.1016/j.compfluid.2016.09.012 Search in Google Scholar

Van der Vorst, H. (1992). BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal of Scientific Computing, 13 (2), 631–644. https://doi.org/10.1137/0913035 Search in Google Scholar

Jiang, G. S., & Shu, C. W. (1996). Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126 (1), 202–228. https://doi.org/10.1006/jcph.1996.0130 Search in Google Scholar

Shu, C.W., & Osher, S. (1988). Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes. Journal of Computational Physics, 77 (2), 439–471. https://doi.org/10.1016/0021-9991(88)90177-5 Search in Google Scholar

Larsen, J., & Dancy, H. (1983). Open Boundaries in Short Wave Simulations – A New Approach. Coastal Engineering, 7 (3), 285–297. https://doi.org/10.1016/0378-3839(83)90022-4 Search in Google Scholar

Mazzaretto, O.M., Menéndez, M., & Lobeto, H. (2022). A Global Evaluation of the JONSWAP Spectra Suitability on Coastal Areas. Ocean Engineering, 266 (2), 112756. https://doi.org/10.1016/j.oceaneng.2022.112756. Search in Google Scholar

Eelsalu, M., Soomere, T., Pindsoo, K., & Lagemaa, P. (2014). Ensemble Approach for Projections of Return Periods of Extreme Water Levels in Estonian Waters. Continental Shelf Research, 91, 201–210. https://doi.org/10.1016/j.csr.2014.09.012 Search in Google Scholar

Johansson, M., Boman, H., Kahma, K. K., & Launiainen, J. (2001). Trends in Sea Level Variability in the Baltic Sea. Boreal Environment Research, 6 (3), 159–179. Search in Google Scholar

Soomere, T., & Pindsoo, K. (2016). Spatial Variability in the Trends in Extreme Storm Surges and Weekly-Scale High Water Levels in the Eastern Baltic Sea. Continental Shelf Research, 115, 53–64. https://doi.org/10.1016/j.csr.2015.12.016 Search in Google Scholar

Kozanis, S., Christofides, A., Mamassis, N., Efstratiadis, A., & Koutsoyiannis, D. (2010). Hydrognomon – Open Source Software for the Analysis of Hydrological Data. Geophysical Research Abstracts, 12, 12419. http://dx.doi.org/10.13140/RG.2.2.21350.83527 Search in Google Scholar

Goda, Y. (2010). Random Seas and Design of Maritime Structures (3rd ed.). Advanced Series on Ocean Engineering 33. World Scientific, New Jersey. https://doi.org/10.1142/7425 Search in Google Scholar

Männikus, T., Soomere, T., & Suursaar, Ü. (2024). How do Simple Wave Models Perform Compared with Sophisticated Models and Measurements in the Eastern Baltic Sea? Estonian Journal of Earth Sciences, 73 (2). Search in Google Scholar

Ranasinghe, R., & Turner, I. L. (2006). Shoreline Response to Submerged Structures: A Review. Coastal Engineering, 53 (1), 65–79. https://doi.org/10.1016/j.coastaleng.2005.08.003 Search in Google Scholar

Fitri, A., Hashim, R., Abolfathi, S., & Maulud, K. N. A. (2019). Dynamics of Sediment Transport and Erosion-Deposition Patterns in the Locality of a Detached Low-Crested Breakwater on a Cohesive Coast. Water, 11 (8). https://doi.org/10.3390/w11081721 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Fisica, Fisica tecnica ed applicata