INFORMAZIONI SU QUESTO ARTICOLO

Cita

Nielsen, L. F. (2005). Composite Materials. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27680-7 Search in Google Scholar

Qin, Q. H. (2015). Introduction to the composite and its toughening mechanisms. In Toughening Mechanisms in Composite Materials (pp. 1–32). Elsevier. https://doi.org/10.1016/B978-1-78242-279-2.00001-9 Search in Google Scholar

Barbero, E. J. (2010). Introduction to Composite Materials Design. CRC Press. https://doi.org/10.1201/9781439894132 Search in Google Scholar

Shishkin, A., Mironovs, V., Lapkovskis, V., Treijs, J., & Korjakins, A. (2014). Ferromagnetic Sorbents for Collection and Utilization of Oil Products. Key Engineering Materials, 604. https://doi.org/10.4028/www.scientific.net/KEM.604.122 Search in Google Scholar

Shishkin, A., Mironovs, V., Zemchenkov, V., Antonov, M., & Hussainova, I. (2016). Hybrid Syntactic Foams of Metal-Fly Ash Cenosphere-Clay. Key Engineering Materials, 674. https://doi.org/10.4028/www.scientific.net/KEM.674.35 Search in Google Scholar

Acar, I., & Atalay, M. U. (2016). Recovery Potentials of Cenospheres from Bituminous Coal Fly Ashes. Fuel, 180, 97–105. https://doi.org/10.1016/j.fuel.2016.04.013 Search in Google Scholar

Ranjbar, N., & Kuenzel, C. (2017). Cenospheres: A Review. Fuel, 207, 1–12. https://doi.org/10.1016/J.FUEL.2017.06.059 Search in Google Scholar

Shishkin, A., Abramovskis, V., Zalite, I., Singh, A. K., Mezinskis, G., Popov, V., & Ozolins, J. (2023). Physical, Thermal, and Chemical Properties of Fly Ash Cenospheres Obtained from Different Sources. Materials, 16 (5). https://doi.org/10.3390/ma16052035 Search in Google Scholar

Weise, J., Lehmhus, D., Baumeister, J., Kun, R., Bayoumi, M., & Busse, M. (2014). Production and Properties of 316l Stainless Steel Cellular Materials and Syntactic Foams. Steel Research International, 85 (3), 486–497. https://doi.org/10.1002/srin.201300131 Search in Google Scholar

Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., & Yogesha, B. (2018). Polymer Matrix-Natural Fiber Composites: An Overview. Cogent Engineering, 5 (1). https://doi.org/10.1080/23311916.2018.1446667 Search in Google Scholar

Zhang, J., Gong, M., Tian, C., & Wang, C.-A. (2016). Facile Synthesis of Well-Defined CeO2 Hollow Spheres with a Tunable Pore Structure. Ceramics International, 42 (5), 6088–6093. https://doi.org/10.1016/j.ceramint.2015.12.166 Search in Google Scholar

Ozcivici, E., & Singh, R. P. (2005). Fabrication and Characterization of Ceramic Foams Based on Silicon Carbide Matrix and Hollow Alumino-Silicate Spheres. Journal of the American Ceramic Society, 88 (12), 3338–3345. https://doi.org/10.1111/j.1551-2916.2005.00612.x Search in Google Scholar

Thijs, I., Luyten, J., & Mullens, S. (2003). Producing Ceramic Foams with Hollow Spheres. Journal of American Ceramic Society, 72 (186975), 2002–2004. Search in Google Scholar

Biju-Duval, P. (2007). A New Porous Material Based on Cenospheres. Georgia Institute of Technology. Search in Google Scholar

Długosz, P., Darłak, P., Purgert, R.M., & Sobczak, J.J. (2011). Synthesis of Light Composites Reinforced with Cenospheres. Composites, 11 (4), 288–293. Search in Google Scholar

Gupta, N. (2007). A Functionally Graded Syntactic Foam Material for High Energy Absorption under Compression. Materials Letters, 61 (4–5), 979–982. https://doi.org/10.1016/j.matlet.2006.06.033 Search in Google Scholar

Gupta, N. (2006). Hollow Particle Filled Composites. TMS Annual Meeting, 2006, 3–13. http://www.scopus.com/inward/record.url?eid=2-s2.0-33646503473&partnerID=tZOtx3y1 Search in Google Scholar

Lin, T. C., Gupta, N., & Talalayev, A. (2008). Thermoanalytical Characterization of Epoxy Matrix-Glass Microballoon Syntactic Foams. Journal of Materials Science, 44 (6), 1520–1527. https://doi.org/10.1007/s10853-008-3074-3 Search in Google Scholar

Shao, Y., Jia, D., & Liu, B. (2009). Characterization of Porous Silicon Nitride Ceramics by Pressureless Sintering Using Fly Ash Cenosphere as a Pore-Forming Agent. Journal of the European Ceramic Society, 29 (8), 1529–1534. https://doi.org/10.1016/j.jeurceramsoc.2008.09.012 Search in Google Scholar

Wang, C., Liu, J., Du, H., & Guo, A. (2012). Effect of Fly Ash Cenospheres on the Microstructure and Properties of Silica-Based Composites. Ceramics International, 38 (5), 4395–4400. https://doi.org/10.1016/j.ceramint.2012.01.044 Search in Google Scholar

Ren, S., Tao, X., Ma, X., Liu, J., Du, H., Guo, A., … & Ge, J. (2018). Fabrication of Fly Ash Cenospheres-Hollow Glass Microspheres/Borosilicate Glass Composites for High Temperature Application. Ceramics International, 44 (1), 1147–1155. https://doi.org/10.1016/j.ceramint.2017.10.089 Search in Google Scholar

Ren, S., Tao, X., Xu, X., Guo, A., Liu, J., Fan, J., … & Liang, J. (2018). Preparation and Characteristic of the Fly Ash Cenospheres/Mullite Composite for High-Temperature Application. Fuel, 233, 336–345. https://doi.org/10.1016/j.fuel.2018.06.058 Search in Google Scholar

Sankaranarayanan, S., Nguyen, Q. B., Shabadi, R., Almajid, A. H., & Gupta, M. (2016). Powder Metallurgy Hollow Fly Ash Cenospheres’ Particles Reinforced Magnesium Composites. Powder Metallurgy, 59 (3), 188–196. https://doi.org/10.1080/00325899.2016.1139339 Search in Google Scholar

Luong, D., Lehmhus, D., Gupta, N., Weise, J., & Bayoumi, M. (2016). Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams. Materials, 9 (2), 115. https://doi.org/10.3390/ma9020115 Search in Google Scholar

Weise, J., Lehmhus, D., Baumeister, J., Kun, R., Bayoumi, M., & Busse, M. (2014). Production and Properties of 316L Stainless Steel Cellular Materials and Syntactic Foams. Steel Research International, 85 (3), 486–497. https://doi.org/10.1002/srin.201300131 Search in Google Scholar

Rugele, K., Lehmhus, D., Hussainova, I., Peculevica, J., Lisnanskis, M., & Shishkin, A. (2017). Effect of Fly-Ash Cenospheres on Properties of Clay-Ceramic Syntactic Foams. Materials, 10 (7). https://doi.org/10.3390/ma10070828 Search in Google Scholar

Wang, M.-R., Jia, D.-C., He, P.-G., & Zhou, Y. (2011). Microstructural and Mechanical Characterization of Fly Ash Cenosphere/Metakaolin-Based Geopolymeric Composites. Ceramics International, 37 (5), 1661–1666. https://doi.org/10.1016/j.ceramint.2011.02.010 Search in Google Scholar

Baronins, J., Setina, J., Sahmenko, G., Lagzdina, S., & Shishkin, A. (2015). Pore Distribution and Water Uptake in a Cenosphere-Cement Paste Composite Material. IOP Conference Series: Materials Science and Engineering, 96 (1), 012011. https://doi.org/10.1088/1757-899X/96/1/012011 Search in Google Scholar

Adesina, A. (2020). Sustainable Application of Cenospheres in Cementitious Materials – Overview of Performance. Developments in the Built Environment, 4, 100029. https://doi.org/10.1016/j.dibe.2020.100029 Search in Google Scholar

Shishkin, A., Mironov, V., Zemchenkov, V., Antonov, M., & Hussainova, I. (2016). Hybrid Syntactic Foams of Metal – Fly Ash Cenosphere – Clay. Key Engineering Materials, 674, 35–40. https://doi.org/10.4028/www.scientific.net/KEM.674.35 Search in Google Scholar

Tatarinov, A., Shishkin, A., & Mironovs, V. (2019). Correlation between Ultrasound Velocity, Density and Strength in Metal-Ceramic Composites with Added Hollow Spheres. IOP Conference Series: Materials Science and Engineering, 660 (1). https://doi.org/10.1088/1757-899X/660/1/012040 Search in Google Scholar

Irtiseva, K., Lapkovskis, V., Mironovs, V., Ozolins, J., Thakur, V. K., Goel, G., … & Shishkin, A. (2021). Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder. Polymers, 13 (4), 574. https://doi.org/10.3390/polym13040574 Search in Google Scholar

Shishkin, A., Drozdova, M., Kozlov, V., Hussainova, I., & Lehmhus, D. (2017). Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams. Metals, 7 (1), 16. https://doi.org/10.3390/met7010016 Search in Google Scholar

Shishkin, A., Drozdova, M., Kozlov, V., Hussainova, I., & Lehmhus, D. (2017). Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams. Metals, 7 (1). https://doi.org/10.3390/met7010016 Search in Google Scholar

Dudina, D. V., Bokhonov, B. B., & Olevsky, E. A. (2019). Fabrication of Porous Materials by Spark Plasma Sintering: A Review. Materials, 12 (3). MDPI AG. https://doi.org/10.3390/ma12030541 Search in Google Scholar

Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Al Aqeeli, N., Laoui, T., … & Kirchner, R. (2012). Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. Journal of Nanomaterials. https://doi.org/10.1155/2012/983470 Search in Google Scholar

Tokita, M. (2021). Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics, 4 (2). https://doi.org/10.3390/ceramics4020014 Search in Google Scholar

Weise, J., Lehmhus, D., Baumeister, J., Kun, R., Bayoumi, M., & Busse, M. (2014). Production and Properties of 316l Stainless Steel Cellular Materials and Syntactic Foams. Steel Research International, 85 (3). https://doi.org/10.1002/srin.201300131 Search in Google Scholar

Peroni, L., Scapin, M., Lehmhus, D., Baumeister, J., Busse, M., Avalle, M., & Weise, J. (2017). High Strain Rate Tensile and Compressive Testing and Performance of Mesoporous Invar (FeNi36) Matrix Syntactic Foams Produced by Feedstock Extrusion. Advanced Engineering Materials, 19 (11). https://doi.org/10.1002/adem.201600474 Search in Google Scholar

Klymenko, V. M. (2019). Spark Plasma Sintering of Porous Materials Made of 1Kh18N9T Corrosion-Resistant Steel Fibers. Powder Metallurgy and Metal Ceramics, 58 (1–2), 23–28. https://doi.org/10.1007/s11106-019-00043-6 Search in Google Scholar

Manukyan, K. V., Yeghishyan, A. V., Shuck, C. E., Moskovskikh, D. O., Rouvimov, S., Wolf, E. E., & Mukasyan, A. S. (2018). Mesoporous Metal - Silica Materials: Synthesis, Catalytic and Thermal Properties. Microporous and Mesoporous Materials, 257. https://doi.org/10.1016/j.micromeso.2017.08.044 Search in Google Scholar

Vassilev, S. V., Menendez, R., Diaz-Somoano, M., & Martinez-Tarazona, M. R. (2004). Phase-Mineral and Chemical Composition of Coal Fly Ashes as a Basis for their Multicomponent Utilization. 2. Characterization of Ceramic Cenosphere and Salt Concentrates. Fuel, 83 (4–5), 585–603. https://doi.org/10.1016/J.FUEL.2003.10.003 Search in Google Scholar

Jung, J., Kim, S. H., Kang, J. H., Park, J., Kim, W. K., Lim, C. Y., & Park, Y. H. (2022). Compressive Strength Modeling and Validation of Cenosphere-Reinforced Aluminum–Magnesium-Matrix-Based Syntactic Foams. Materials Science and Engineering A, 849. https://doi.org/10.1016/j.msea.2022.143452 Search in Google Scholar

Yu, J., Li, X., Fleming, D., Meng, Z., Wang, D., & Tahmasebi, A. (2012). Analysis on Characteristics of Fly Ash from Coal Fired Power Stations. Energy Procedia, 17, 3–9. https://doi.org/10.1016/j.egypro.2012.02.054 Search in Google Scholar

Yoriya, S., Intana, T., & Tepsri, P. (2019). Separation of Cenospheres from Lignite Fly Ash Using Acetone-Water Mixture. Applied Sciences (Switzerland), 9 (18). https://doi.org/10.3390/app9183792 Search in Google Scholar

Jiang, F., Zhang, L., Mukiza, E., Qi, Z., & Cang, D. (2018). Formation Mechanism of High Apparent Porosity Ceramics Prepared from Fly Ash Cenosphere. Journal of Alloys and Compounds, 749, 750–757. https://doi.org/10.1016/j.jallcom.2018.03.303 Search in Google Scholar

Rugele, K., Lehmhus, D., Hussainova, I., Peculevica, J., Lisnanskis, M., & Shishkin, A. (2017). Effect of Fly-Ash Cenospheres on Properties of Clay-Ceramic Syntactic Foams. Materials, 10 (7). https://doi.org/10.3390/ma10070828 Search in Google Scholar

Nithyanandam, A., & Deivarajan, T. (2021). Development of Fly Ash Cenosphere-Based Composite for Thermal Insulation Application. International Journal of Applied Ceramic Technology, 18 (5), 1825–1831. https://doi.org/10.1111/ijac.13767 Search in Google Scholar

Kristombu Baduge, S., Mendis, P., San Nicolas, R., Nguyen, K., & Hajimohammadi, A. (2019). Performance of Lightweight Hemp Concrete with Alkali-Activated Cenosphere Binders Exposed to Elevated Temperature. Construction and Building Materials, 224, 158–172. https://doi.org/10.1016/j.conbuildmat.2019.07.069 Search in Google Scholar

Kolay, P. K., & Singh, D. N. (2001). Physical, Chemical, Mineralogical, and Thermal Properties of Cenospheres from an Ash Lagoon. Cement and Concrete Research, 31, 539–542. Search in Google Scholar

Anshits, N. N., Mikhailova, O. A., Salanov, A. N., & Anshits, A. G. (2010). Chemical Composition and Structure of the Shell of Fly Ash Non-Perforated Cenospheres Produced from the Combustion of the Kuznetsk Coal (Russia). Fuel, 89 (8), 1849–1862. https://doi.org/10.1016/j.fuel.2010.03.049 Search in Google Scholar

Patel, S. K., Majhi, R. K., Satpathy, H. P., & Nayak, A. N. (2019). Durability and Microstructural Properties of Lightweight Concrete Manufactured with Fly Ash Cenosphere and Sintered Fly Ash Aggregate. Construction and Building Materials, 226, 579–590. https://doi.org/10.1016/j.conbuildmat.2019.07.304 Search in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics