Accesso libero

Charge Assessment for Nitrate-Based Salt as a Phase Change Material for a Medium-Temperature Latent Storage Tank

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ismail, I., Rahman, R. A., Haryanto, G., & Pane, E. A. (2021). The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. International Journal of Renewable Energy Research, 11 (2), 595–599. https://doi.org/10.20508/ijrer.v11i2.11862.g8181 Search in Google Scholar

Atalay, H., Yavaş, N., & Turhan Çoban, M. (2022). Sustainability and Performance Analysis of a Solar and Wind Energy Assisted Hybrid Dryer. Renewable Energy, 187, 1173–1183. https://doi.org/10.1016/j.renene.2022.02.020 Search in Google Scholar

Afzal, A., Iqbal, T., Ikram, K., Anjum, M. N., Umair, M., Azam, M., … & Majeed, F. (2023). Development of a Hybrid Mixed-Mode Solar Dryer for Product Drying. Heliyon, 9 (3), e14144. https://doi.org/10.1016/j.heliyon.2023.e14144 Search in Google Scholar

Kundziņa, A., Geipele, I., Lapuke, S., & Auders, M. (2022). Energy Performance Aspects of Non-Residential Buildings in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (6), 30–42. https://doi.org/10.2478/lpts-2022-0045 Search in Google Scholar

Qiu, S., Ruth, M., & Ghosh, S. (2015). Evacuated Tube Collectors: A Notable Driver behind the Solar Water Heater Industry in China. Renewable and Sustainable Energy Reviews, 47, 580–588. https://doi.org/10.1016/j.rser.2015.03.067 Search in Google Scholar

Salih, S. M., Jalil, J. M., & Najim, S. E. (2019). Experimental and Numerical Analysis of Double-Pass Solar Air Heater Utilizing Multiple Capsules PCM. Renewable Energy, 143, 1053–1066. https://doi.org/10.1016/j.renene.2019.05.050 Search in Google Scholar

Abdeldjebar, R., Elmir, M., & Douha, M. (2023). Study of the Performance of a Photovoltaic Solar Panel By Using a Nanofluid as a Cooler. Latvian Journal of Physics and Technical Sciences, 60 (3), 69–84. https://doi.org/10.2478/lpts-2023-0018 Search in Google Scholar

Favakeh, A., Khademi, A., & Shafii, M. B. (2019). Experimental Study of Double Solid Phase Change Material in a Cavity. 7th International Conference On Energy Research and Development, ICERD 2019, 24–31. Search in Google Scholar

Khademi, A., Mehrjardi, S. A. A., Said, Z., & Chamkha, A. J. (2023). Heat Transfer Improvement in a Thermal Energy Storage System Using Auxiliary Fluid Instead of Nano-PCM in an Inclined Enclosure: A Comparative Study. Journal of Applied and Computational Mechanics, 9 (2), 475–486. https://doi.org/10.22055/jacm.2022.41867.3829 Search in Google Scholar

Assari, M. R., Basirat Tabrizi, H., Parvar, M., & Alkasir Farhani, M. (2019). Experimental Investigation Of Sinusoidal Tube in Triplex-Tube Heat Exchanger during Charging and Discharging Processes Using Phase Change Materials. International Journal of Engineering, Transactions A: Basics, 32 (7), 999–1009. https://doi.org/10.5829/ije.2019.32.07a.13 Search in Google Scholar

Kairisa, E., & Mutule, A. (2023). Reliable Data Profiling for Energy Communities - Review of Open-Source Approaches. Latvian Journal of Physics and Technical Sciences, 60 (2), 17–30. https://doi.org/10.2478/lpts-2023-0008 Search in Google Scholar

Suyitno, B. M., Ismail, I., Rahman, R. A. (2023). Improving the performance of a small-scale cascade latent heat storage system by using gradual melting temperature storage tank. Case Studies in Thermal Engineering, 45, 103034. https://doi.org/10.1016/j.csite.2023.103034 Search in Google Scholar

Klimeš, L., Charvát, P., Mastani Joybari, M., Zálešák, M., Haghighat, F., Panchabikesan, K., … & Yuan, Y. (2020). Computer Modelling and Experimental Investigation of Phase Change Hysteresis of PCMs: The State-of-the-Art Review. Applied Energy, 263, 114572. https://doi.org/10.1016/j.apenergy.2020.114572 Search in Google Scholar

Suyitno, B. M., Pane, E. A., Rahmalina, D., Rahman, R. A. (2023). Improving the operation and thermal response of multiphase coexistence latent storage system using stabilized organic phase change material. Results in Engineering, 18, 101210. https://doi.org/10.1016/j.rineng.2023.101210 Search in Google Scholar

Ma, X., Sheikholeslami, M., Jafaryar, M., Shafee, A., Nguyen-Thoi, T., & Li, Z. (2020). Solidification Inside a Clean Energy Storage Unit Utilizing Phase Change Material with Copper Oxide Nanoparticles. Journal of Cleaner Production, 245, 118888. https://doi.org/10.1016/j.jclepro.2019.118888 Search in Google Scholar

Putra, N., Rawi, S., Amin, M., Kusrini, E., Kosasih, E. A., & Indra Mahlia, T. M. (2019). Preparation of Beeswax/Multi-Walled Carbon Nanotubes as Novel Shape-Stable Nanocomposite Phase-Change Material for Thermal Energy Storage. Journal of Energy Storage, 21, 32–39. https://doi.org/10.1016/j.est.2018.11.007 Search in Google Scholar

Elbrashy, A. A., Abou-Taleb, F. S., El-Fakharany, M. K., & Essa, F. A. (2022). Experimental Study of Solar Air Heater Performance by Evacuated Tubes Connected in Series and Loaded with Thermal Storage Material. Journal of Energy Storage, 54, 105266. https://doi.org/10.1016/j.est.2022.105266 Search in Google Scholar

Ismail, I., Syahbana, M. S. L., & Rahman, R. A. (2022). Thermal Performance Assessment for an Active Latent Heat Storage Tank by Using Various Finned-Coil Heat Exchangers. International Journal of Heat and Technology, 40 (6), 1470–1477. https://doi.org/10.18280/ijht.400615 Search in Google Scholar

Bouselsal, M., Mebarek-Oudina, F., Biswas, N., & Ismail, A. A. I. (2023). Heat Transfer Enhancement Using Al2O3-MWCNT Hybrid-Nanofluid inside a Tube/Shell Heat Exchanger with Different Tube Shapes. Micromachines, 14 (1072). Search in Google Scholar

Khademi, A., Mehrjardi, S. A. A., Said, Z., Saidur, R., Ushak, S., & Chamkha, A. J. (2023). A Comparative Study of Melting Behavior of Phase Change Material with Direct Fluid Contact and Container Inclination. Energy Nexus, 10, 100196. https://doi.org/10.1016/j.nexus.2023.100196 Search in Google Scholar

Hosseininaveh, H., Mohammadi, O., Faghiri, S., & Shafii, M. B. (2021). A Comprehensive Study on the Complete Charging-Discharging Cycle of a Phase Change Material Using Intermediate Boiling Fluid to Control Energy Flow. Journal of Energy Storage, 35, 102235. https://doi.org/10.1016/j.est.2021.102235 Search in Google Scholar

Kulkarni, P., & Muthadhi, A. (2020). Improving Thermal and Mechanical Property of Lightweight Concrete Using n-Butyl Stearate/Expanded Clay Aggregate with Alccofine1203. International Journal of Engineering, Transactions A: Basics, 33 (10), 1842–1851. https://doi.org/10.5829/IJE.2020.33.10A.03 Search in Google Scholar

Orozco, M. A., Acurio, K., Vásquez-Aza, F., Martínez-Gómez, J., & Chico-Proano, A. (2021). Thermal Storage of Nitrate Salts as Phase Change Materials (PCMs). Materials, 14 (23). https://doi.org/10.3390/ma14237223 Search in Google Scholar

Caraballo, A., Galán-Casado, S., Caballero, Á., & Serena, S. (2021). Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies, 14 (4), 1–15. https://doi.org/10.3390/en14041197 Search in Google Scholar

Peinado, A., Pliego, A., Pedro, F., & Márquez, G. (2019). A Review of the Application Performances of Concentrated Solar Power Systems. Applied Energy, 255, 113893. https://doi.org/10.1016/j.apenergy.2019.113893 Search in Google Scholar

Jiang, F., Zhang, L., Cang, D., Ling, X., & Ding, Y. (2021). Preparation and Characterization of a Heat Storage Material: Shape-Stabilized KNO3 Using a Modified Diatomite-Based Porous Ceramic as the Skeleton. Ceramics International, 47 (18), 26301–26309. https://doi.org/10.1016/j.ceramint.2021.06.040 Search in Google Scholar

Dunlop, T. O., Jarvis, D. J., Voice, W. E., & Sullivan, J. H. (2018). Stabilization of Molten Salt Materials Using Metal Chlorides for Solar Thermal Storage. Scientific Reports, 8 (1), 1–7. https://doi.org/10.1038/s41598-018-26537-8 Search in Google Scholar

Lincu, D., Ioniţǎ, S., Mocioiu, O. C., Berger, D., Matei, C., & Mitran, R. A. (2022). Aluminum Doping of Mesoporous Silica as a Promising Strategy for Increasing the Energy Storage of Shape Stabilized Phase Change Materials Containing Molten NaNO3: KNO3 Eutectic Mixture. Journal of Energy Storage, 49. https://doi.org/10.1016/j.est.2022.104188 Search in Google Scholar

Qu, Y., Wang, S., Tian, Y., & Zhou, D. (2019). Comprehensive Evaluation of Paraffin-HDPE Shape Stabilized PCM with Hybrid Carbon Nano-Additives. Applied Thermal Engineering, 163. https://doi.org/10.1016/j.applthermaleng.2019.114404 Search in Google Scholar

Favakeh, A., Khademi, A., & Shafii, M. B. (2023). Experimental Investigation of the Melting Process of Immiscible Binary Phase Change Materials. Heat Transfer Engineering, 44 (2), 154–174. https://doi.org/10.1080/01457632.2022.2034085 Search in Google Scholar

Cárdenas-Ramírez, C., Jaramillo, F., Fernández, A. G., Cabeza, L. F., & Gómez, M. A. (2021). Influence of Thermal Treatments on the Absorption and Thermal Properties of a Clay Mineral Support Used for Shape-Stabilization of Fatty Acids. Journal of Energy Storage, 36. https://doi.org/10.1016/j.est.2021.102427 Search in Google Scholar

Lu, Y., Zhang, G., Hao, J., Ren, Z., Deng, Z., Xu, G., … & Chang, L. (2019). Fabrication and Characterization of the Novel Shape-Stabilized Composite PCMs of Na2CO3-K2CO3/MgO/Glass. Solar Energy, 189, 228–234. https://doi.org/10.1016/j.solener.2019.07.064 Search in Google Scholar

Mitran, R. A., Lincu, D., Buhǎlţeanu, L., Berger, D., & Matei, C. (2020). Shape-Stabilized Phase Change Materials Using Molten NaNO3 – KNO3 Eutectic and Mesoporous Silica Matrices. Solar Energy Materials and Solar Cells, 215. https://doi.org/10.1016/j.solmat.2020.110644 Search in Google Scholar

Jančík, P., Schmirler, M., Hyhlík, T., Bláha, A., Sláma, P., Devera, J., & Kouba, J. (2021). Experimental Investigation and Modelling of a Laboratory-Scale Latent Heat Storage with Cylindrical PCM Capsules. Scientific Reports, 11 (1), 1–15. https://doi.org/10.1038/s41598-021-02705-1 Search in Google Scholar

Fernández, A. G., Galleguillos, H., Fuentealba, E., & Pérez, F. J. (2015). Thermal Characterization of HITEC Molten Salt for Energy Storage in Solar Linear Concentrated Technology. Journal of Thermal Analysis and Calorimetry, 122 (1), 3–9. https://doi.org/10.1007/s10973-015-4715-9 Search in Google Scholar

Jiang, F., Zhang, L., She, X., Li, C., Cang, D., Liu, X., … & Ding, Y. (2020). Skeleton Materials for Shape-Stabilization of High Temperature Salts Based Phase Change Materials: A Critical Review. Renewable and Sustainable Energy Reviews, 119, 109539. https://doi.org/10.1016/j.rser.2019.109539 Search in Google Scholar

Zsembinszki, G., Orozco, C., Gasia, J., Barz, T., Emhofer, J., & Cabeza, L. F. (2020). Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank. Energies, 13 (6). https://doi.org/10.3390/en13061425 Search in Google Scholar

Li, P., Xu, C., Liao, Z., Ju, X., & Ye, F. (2020). Numerical Investigation on the Thermal Performance of a Cascaded Latent Heat Thermal Energy Storage. Frontiers in Heat and Mass Transfer, 15 (1), 1–10. https://doi.org/10.5098/hmt.15.10 Search in Google Scholar

Mayilvelnathan, V., & Valan Arasu, A. (2020). Experimental Investigation on Thermal Behavior of Graphene Dispersed Erythritol PCM in a Shell and Helical Tube Latent Energy Storage System. International Journal of Thermal Sciences, 155, 106446. https://doi.org/10.1016/j.ijthermalsci.2020.106446 Search in Google Scholar

Barz, T., & Emhofer, J. (2021). Paraffins as Phase Change Material in a Compact Plate-Fin Heat Exchanger - Part I: Experimental Analysis and Modeling of Complete Phase Transitions. Journal of Energy Storage, 33. https://doi.org/10.1016/j.est.2020.102164 Search in Google Scholar

Janghel, D., Saha, S. K., & Karagadde, S. (2020). Effect of Shrinkage Void on Thermal Performance of Pure and Binary Phase Change Materials Based Thermal Energy Storage System: A Semi-analytical Approach. Applied Thermal Engineering, 167, 114706. https://doi.org/10.1016/j.applthermaleng.2019.114706 Search in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics