Accesso libero

Synthesis of NaYF4:Yb3+, Tm3+ Nanocrystals Via the Thermal Decomposition Method Using Refined Sunflower Oil

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Auzel, F. (2004). Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chemical Reviews, 104 (1), 139–174. https://doi.org/10.1021/cr020357g Search in Google Scholar

Yang, D., Chen, D., He, H., Pan, Q., Xiao, Q., Qiu, J., & Dong, G. (2016). Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals. Scientific Reports, 6, 29871. https://doi.org/10.1038/srep29871 Search in Google Scholar

Bing-Shuai, Z. H. O. U., Shi-Han, X. U., Song-Tao, H. U., Li-Heng, S. U. N., Jie-Kai, L. Y. U., Rui, S. U. N., … & Biao, D. O. N. G. (2022). Recent Progress of Upconversion Nanoparticles in the Treatment and Detection of Various Diseases. Chinese Journal of Analytical Chemistry, 50 (2), 19–32. https://doi.org/10.1016/j.cjac.2021.08.003 Search in Google Scholar

Peng, X., Ai, F., Yan, L., Ha, E., Hu, X., He, S., & Hu, J. (2021). Synthesis Strategies and Biomedical Applications for Doped Inorganic Semiconductor Nanocrystals. Cell Reports Physical Science, 2 (5), 100436. https://doi.org/10.1016/j.xcrp.2021.100436 Search in Google Scholar

Xin, N., Wei, D., Zhu, Y., Yang, M., Ramakrishna, S., Lee, O., … & Fan, H. (2020). Upconversion Nanomaterials: A Platform for Biosensing, Theranostic and Photoregulation. Materials Today Chemistry, 17, 100329. https://doi.org/10.1016/j.mtchem.2020.100329 Search in Google Scholar

Escudero, A., Becerro, A. I., Carrillo-Carrión, C., Núñez, N. O., Zyuzin, M. v., Laguna, M., … & Parak, W. J. (2017). Rare Earth Based Nanostructured Materials: Synthesis, Functionalization, Properties and Bioimaging and Biosensing Applications. Nanophotonics, 6 (5). https://doi.org/10.1515/nanoph-2017-0007 Search in Google Scholar

Liu, Y., Tu, D., Zheng, W., Lu, L., You, W., Zhou, S., … & Chen, X. (2018). A Strategy for Accurate Detection of Glucose in Human Serum and Whole Blood Based on an Upconversion Nanoparticles-Polydopamine Nanosystem. Nano Research, 11 (6), 3164–3174. https://doi.org/10.1007/s12274-017-1721-1 Search in Google Scholar

Li, Z., Lv, S., Wang, Y., Chen, S., & Liu, Z. (2015). Construction of LRET-Based Nanoprobe Using Upconversion Nanoparticles with Confined Emitters and Bared Surface as Luminophore. Journal of the American Chemical Society, 137 (9), 3421–3427. https://doi.org/10.1021/jacs.5b01504 Search in Google Scholar

Hlaváček, A., Farka, Z., Hübner, M., Horňáková, V., Němeček, D., Niessner, R., … & Gorris, H. H. (2016). Competitive Upconversion-Linked Immunosorbent Assay for the Sensitive Detection of Diclofenac. Analytical Chemistry, 88 (11), 6011–6017. https://doi.org/10.1021/acs.analchem.6b01083 Search in Google Scholar

Chen, H., Tang, W., Liu, Y., & Wang, L. (2022). Quantitative Image Analysis Method for Detection of Nitrite with Cyanine Dye-NaYF4:Yb,Tm@NaYF4 Upconversion Nanoparticles Composite Luminescent Probe. Food Chemistry, 367, 130660. https://doi.org/10.1016/j.foodchem.2021.130660 Search in Google Scholar

Zuo, J., Wang, W., Zhang, D., Wang, X., Ma, Y., Li, P., ... & Zhang, H. (2022). Ultra-Sensitive Water Detection Based on NaErF4@NaYF4 High-Level-Doping Upconversion Nanoparticles. Applied Surface Science, 575, 151701. https://doi.org/10.1016/j.apsusc.2021.151701 Search in Google Scholar

Yang, C., Li, Y., Wu, N., Zhang, Y., Feng, W., Yu, M., & Li, Z. (2021). Ratiometric Upconversion Luminescence Nanoprobes for Quick Sensing of Hg2+ and Cells Imaging. Sensors and Actuators, B: Chemical, 326, 128841. https://doi.org/10.1016/j.snb.2020.128841 Search in Google Scholar

Balabhadra, S., Reid, M. F., Golovko, V., & Wells, J. P. R. (2020). A Comparison of the Yb3+ Absorption and Upconversion Excitation Spectra for Both the Cubic and Hexagonal Phases of NaYF4:Yb3+/Er3+ Nanoparticles. Optical Materials, 107, 110050. https://doi.org/10.1016/j.optmat.2020.110050 Search in Google Scholar

Krämer, K. W., Biner, D., Frei, G., Güdel, H. U., Hehlen, M. P., & Lüthi, S. R. (2004). Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chemistry of Materials, 16 (7), 1244–1251. https://doi.org/10.1021/cm031124o Search in Google Scholar

Hong, E., Liu, L., Bai, L., Xia, C., Gao, L., Zhang, L., & Wang, B. (2019). Control Synthesis, Subtle Surface Modification of Rare-Earth-Doped Upconversion Nanoparticles and their Applications in Cancer Diagnosis and Treatment. Materials Science and Engineering C, 105, 110097. https://doi.org/10.1016/j.msec.2019.110097 Search in Google Scholar

Ansari, A. A., & Sillanpää, M. (2021). Advancement in Upconversion Nanoparticles Based NIR-Driven Photocatalysts. Renewable and Sustainable Energy Reviews, 151, 111631. https://doi.org/10.1016/j.rser.2021.111631 Search in Google Scholar

Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 115 (1), 395–465. https://doi.org/10.1021/cr400478f Search in Google Scholar

He, M., Huang, P., Zhang, C., Chen, F., Wang, C., Ma, J., … & Cui, D. (2011). A General Strategy for the Synthesis of Upconversion Rare Earth Fluoride Nanocrystals via a Novel OA/Ionic Liquid Two-Phase System. Chemical Communications, 47 (33), 9510–9512. https://doi.org/10.1039/c1cc12886h Search in Google Scholar

Dinic, I. Z., Rabanal, M. E., Yamamoto, K., Tan, Z., Ohara, S., Mancic, L. T., & Milosevic, O. B. (2016). PEG and PVP Assisted Solvothermal Synthesis of NaYF4:Yb3+/Er3+ Up-conversion Nanoparticles. Advanced Powder Technology, 27 (3), 845–853. https://doi.org/10.1016/j.apt.2015.11.010 Search in Google Scholar

Mehrdel, B., Nikbakht, A., Aziz, A. A., Jameel, M. S., Dheyab, M. A., & Khaniabadi, P. M. (2022). Upconversion Lanthanide Nanomaterials: Basics Introduction, Synthesis Approaches, Mechanism and Application in Photodetector and Photovoltaic Devices. Nanotechnology, 33 (8), 082001. https://doi.org/10.1088/1361-6528/ac37e3 Search in Google Scholar

Min, Y., Ding, X., Yu, B., Shen, Y., & Cong, H. (2023). Design of Sodium Lanthanide Fluoride Nanocrystals for NIR Imaging and Targeted Therapy. Materials Today Chemistry, 27, 101335. https://doi.org/10.1016/J.MTCHEM.2022.101335 Search in Google Scholar

Pawar, R. V., Hulwan, D. B., & Mandale, M. B. (2022). Recent Advancements in Synthesis, Rheological Characterization, and Tribological Performance of Vegetable Oil-Based Lubricants Enhanced with Nanoparticles for Sustainable Lubrication. Journal of Cleaner Production, 378, 134454. https://doi.org/10.1016/J.JCLEPRO.2022.134454 Search in Google Scholar

Suter, J. D., Pekas, N. J., Berry, M. T., & May, P. S. (2014). Real-Time-Monitoring of the Synthesis of β-NaYF4:17% Yb,3% Er Nanocrystals Using NIR-to-Visible Upconversion Luminescence. Journal of Physical Chemistry C, 118 (24), 13238–13247. https://doi.org/10.1021/jp502971j Search in Google Scholar

Gotor, A. A., & Rhazi, L. (2016). Effects of Refining Process on Sunflower Oil Minor Components: A Review. OCL, 23 (2), D207. https://doi.org/10.1051/ocl/2016007 Search in Google Scholar

Sarakovskis, A., Grube, J., Mishnev, A., & Springis, M. (2009). Up-conversion Processes in NaLaF4:Er3+. Optical Materials, 31 (10), 1517–1524. https://doi.org/10.1016/J.OPTMAT.2009.02.015 Search in Google Scholar

Grube, J. (2022). Up-conversion Luminescence Processes in NaLaF4 Doped with Tm3+ and Yb3+ and Dependence on Tm3+ Concentration and Temperature. Appl. Spectrosc. 76, 189–198. https://doi.org/10.1177/00037028211045424. Search in Google Scholar

Perveņecka, J., Teterovskis, J., Vembris, A., Vītols, K., Tropiņš, E., Vīksna, V. T., … & Grūbe, J. (2023). An Innovative Approach to Photolithography for Optical Recording of High-Resolution Two-Dimensional Structures in a Negative SU8 Photoresist by Activation of Up-conversion Luminescence in Yb3+ and Tm3+ Doped NaYF4 Nanoparticles. Nano-Structures & Nano-Objects, 33, 100932. https://doi.org/10.1016/J.NANOSO.2022.100932 Search in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics