INFORMAZIONI SU QUESTO ARTICOLO

Cita

Childs, P.R.N., Greenwood, J.R., & Long, C.A. (2000). Review of Temperature Measurement. Rev. Sci. Instrum., 71, 2959–2978. doi:10.1063/1.1305516 Search in Google Scholar

Wang, X.D., Wolfbeis, O.S., & Meier, R.J. (2013). Luminescent Probes and Sensors for Temperature. Chem. Soc. Rev., 42, 7834e7869. https://doi.org/10.1039/C3CS60102A. Search in Google Scholar

Dramićanin, M.D. (2020). Trends in Luminescence Thermometry. Journal of Applied Physics, 128 (4), 40902. https://doi.org/10.1063/5.0014825 Search in Google Scholar

Wang, Q., Liao, M., Lin, Q., Xiong, M., Zhongfei, M., & Wu, F. (2021). A Review on Fluorescence Intensity Ratio Thermometer Based on Rare-Earth and Transition Metal Ions Doped Inorganic Luminescent Materials. Journal of Alloys and Compounds, 850. 156744. https://doi.org/10.1016/j.jallcom.2020.156744. Search in Google Scholar

Wang, X., Liu, Q., Bu, Y., Liu, C.-S., Liu, T., & Yan, X. (2015). Optical Temperature Sensing of Rare-Earth Ion Doped Phosphors. RSC Advances, 5 (105), 86219–86236. https://doi.org/10.1039/c5ra16986k. Search in Google Scholar

Zhou, Y., Qin, F., Zheng, Y., Zhang, Z., & Cao, W. (2015). Fluorescence Intensity Ratio Method for Temperature Sensing. Optics letters, 40 (19), 4544–4547. https://doi.org/10.1364/OL.40.004544 Search in Google Scholar

Marciniak, L., Kniec, K., Elzbieciak-Piecka, K., Trejgis, K., Stefanska, J., & Dramićanin, M. (2022). Luminescence Thermometry with Transition Metal Ions. A Review. Coordination Chemistry Reviews, 469, 214671. https://doi.org/10.1016/j.ccr.2022.214671. Search in Google Scholar

Abbas, M.T., Khan, N.Z., Mao, J., Qiu, L., Wei, X., Chen, Y., & Khan, S.A. (2022). Lanthanide and Transition Metals Doped Materials for Non-contact Optical Thermometry with Promising Approaches. Materials Today Chemistry, 24, 100903. https://doi.org/10.1016/j.matchem.2022.100903. Search in Google Scholar

Singh, V., Chakradhar, R.P.S. Rao, J.L., & Kim, D.K. (2008). Photoluminescence and EPR Studies of Cr-doped Hibonite (CaAl12O19) Phosphors. Solid State Sci., 10, 1525–1532. https://doi.org/10.1016/j.solidstatesciences.2008.03.006. Search in Google Scholar

Singh, V., Natarajan, V., & Zhu, J.J., (2007). Luminescence and EPR Investigations of Mn Activated Calcium Aluminate Prepared via Combustion Method. Opt Mater (Amst)., 30, 468–472. https://doi.org/10.1016/j.optmat.2007.01.003. Search in Google Scholar

Kemere, M., Antuzevics, A., Rodionovs, P., Rogulis, U., & Sarakovskis, A., (2022). Photoluminescence and Electron Paramagnetic Resonance Studies of Mn2+ Doped CaAl4O7. Opt Mater (Amst)., 127, 112352. https://doi.org/10.1016/j.optmat.2022.112352. Search in Google Scholar

Lu, J., Pan, Y., Wang, J., Chen, X., Huang, S., & Liu, G. (2013). Reduction of Mn4+ to Mn2+ in CaAl12O19 by Co-doping Charge Compensators to Obtain Tunable Photoluminescence. RSC Advances, 3 (14), 4510–4513. https://doi.org/10.1039/c3ra22938f. Search in Google Scholar

Hu, J., Song, E., Zhou, Y., Zhang, S., Ye, S., Xia, Z., & Zhang, Q. (2019). Non-stoichiometric Defect-Controlled Reduction toward Mixed-Valence Mn-doped Hexaaluminates and their Optical Applications. Journal of Materials Chemistry C, 7 (19), 5716–5723. https://doi.org/10.1039/C9TC01026B Search in Google Scholar

Yang, H., Zhao, W., Song, E., Yun, R., Huang, H., Song, J., … & Li, Y. (2020). Highly Flexible Dual-Mode Anti-counterfeiting Designs Based on Tunable Multi-band Emissions and Afterglow from Chromium-Doped Aluminates. Journal of Materials Chemistry, C 8 (46), 16533–16541. https://doi.org/10.1039/d0tc04469e. Search in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics