INFORMAZIONI SU QUESTO ARTICOLO

Cita

International Energy Agency (n.d.). Available at https://www.iea.org/. Search in Google Scholar

European Commission. (n.d.). A European Green Deal Available at https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en/. Search in Google Scholar

Kim, M. S., Jeon, H. K., Lee, K. W., Ryu, J. H., & Choi, S. W. (2022). Analysis of Hydrogen Filling of 175 Liter Tank for Large-Sized Hydrogen Vehicle. Appl. Sci., 12 (10), 4856. doi: 10.3390/app12104856. Open DOISearch in Google Scholar

Xue, L., Deng, J., Wang, X., Wang, Z., & Liu, B. (2022). Numerical Simulation and Optimization of Rapid Filling of High-Pressure Hydrogen Storage Cylinder. Energies, 15 (14), 2022. doi: 10.3390/en15145189. Open DOISearch in Google Scholar

Zhao, B., Wei, H., Peng, X., Feng, J., & Jia, X. (2022). Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank. Energies, 15 (10). doi: 10.3390/en15103811. Open DOISearch in Google Scholar

Heitsch, M., Baraldi, D., Moretto, P., & Heitschec, M. E. (2009). Simulation of the Fast Filling of Hydrogen Tanks. Proc. 3rd Int. Conf. Hydrog. Saf. (ICHS 3), 1–12, [Online]. Available at https://h2tools.org/sites/default/files/2019-08/SimulationoftheFastFillingofHydrogenTanks.pdf. Search in Google Scholar

Li, M., Bai, Y., Zhang, C., & Song, Y. (2019). Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle. Int. J. Hydrogen Energy, 44 (21), 10677–10693. doi: 10.1016/j.ijhydene.2019.02.208. Open DOISearch in Google Scholar

Melideo, D., Baraldi, D., Acosta-Iborra, B., Ortiz Cebolla, R., & Moretto, P. (2017). CFD Simulations of Filling and Emptying of Hydrogen Tanks. Int. J. Hydrogen Energy, 42 (11), 7304–7313. doi: 10.1016/j.ijhydene.2016.05.262. Open DOISearch in Google Scholar

Gonin, R., Horgue, P., Guibert, R., Fabre, D., Bourguet, R., Ammouri, F., & Vyazmina E. (2022). A Computational Fluid Dynamic Study of the Filling of a Gaseous Hydrogen Tank under Two Contrasted Scenarios. Int. J. Hydrogen Energy, 47 (55), 23278–23292. doi: 10.1016/j.ijhydene.2022.03.260. Open DOISearch in Google Scholar

Sdanghi, G., Maranzana, G., Celzard, A., & Fierro V. (2020). Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities. Energies, 13 (12). doi: 10.3390/en13123145. Open DOISearch in Google Scholar

Biaek, A., Bielawski, P., & Lotos, G. S. A. (2018). Failure Analysis of Refinery Hydrogen Reciprocating Compressors. Diagnostyka, 19 (1), 83–92. doi: 10.29354/diag/82961. Open DOISearch in Google Scholar

Navarro, E., Granryd, E., Urchueguía, J. F., & Corberán, J. M. (2007). A Phenomenological Model for Analyzing Reciprocating Compressors. Int. J. Refrig., 30 (7), 1254–1265. doi: 10.1016/j.ijrefrig.2007.02.006. Open DOISearch in Google Scholar

ISO. ISO 15869. This Standard Specifies Requirements for High-Pressure Hydrogen Storage Vessels, Including Design, Manufacture, Inspection, Testing, and Certification. Available at https://www.iso.org/standard/52871.html. Search in Google Scholar

Energy. (n.d.). Hydrogen Storage. Available at https://www.energy.gov/eere/fuelcells/hydrogen-storage. Search in Google Scholar

ISO. (2019). ISO 14687:2019. Hydrogen Fuel Quality — Product Specification. Available at https://www.iso.org/standard/69539.html. Search in Google Scholar

ISO. (2015). ISO/TR 15916:2015. Basic Considerations for the Safety of Hydrogen Systems. Available at https://www.iso.org/standard/56546.html. Search in Google Scholar

Sdanghi, G., Maranzana, G., Celzard, A., & Fierro, V. (2018). Review of the Current Technologies and Performances of Hydrogen Compression for Stationary and Automotive Applications. Renew. Sustain. Energy Rev., 102, 150–170. doi: 10.1016/j.rser.2018.11.028. Open DOISearch in Google Scholar

Wang, T., Jia, X., Li, X., Ren, S., & Peng, X. (2020). Thermal-Structural Coupled Analysis and Improvement of the Diaphragm Compressor Cylinder Head for a Hydrogen Refueling Station. Int. J. Hydrogen Energy, 45 (1), 809–821. doi: 10.1016/j.ijhydene.2019.10.199. Open DOISearch in Google Scholar

Jia, X., Chen, J., Wu, H., & Peng, X. (2016). Study on the Diaphragm Fracture in a Diaphragm Compressor for a Hydrogen Refueling Station. Int. J. Hydrogen Energy, 41 (15), 6412–6421. doi: 10.1016/j.ijhydene.2016.02.106. Open DOISearch in Google Scholar

Li, X., Chen, J., Wang, Z., Jia, X., & Peng, X. (2019). A Non-Destructive Fault Diagnosis Method for a Diaphragm Compressor in the Hydrogen Refueling Station. Int. J. Hydrogen Energy, 44 (44), 24301–24311. doi: 10.1016/j.ijhydene.2019.07.147. Open DOISearch in Google Scholar

Wennemar J. (2009). Dry Screw Compressor Performance and Application Range. 156 Proc. of Thirty-Eighth Turbomach. Symp. (pp. 149–156). Search in Google Scholar

Di Bella, F. A. (2015). Development of a Centrifugal Hydrogen Pipeline Gas Compressor. Available: https://www.osti.gov/biblio/1227195-development-centrifugal-hydrogen-pipeline-gas-compressor. Search in Google Scholar

Wang, H., Yang, D., Zhu, Z., Zhang, H., & Zhang, Q. (2023). Effect of Interstage Pipeline on the Performance of Two-Stage Centrifugal Compressors for Automotive Hydrogen Fuel Cells. Appl. Sci., 13 (1). doi: 10.3390/app13010503. Open DOISearch in Google Scholar

Lototskyy, M.V., Yartys, V.A., Pollet, B.G., & Bowman, R.C. (2014). Metal Hydride Hydrogen Compressors: A Review. Int. J. Hydrogen Energy, 39 (11), 5818–5851. doi: 10.1016/j.ijhydene.2014.01.158. Open DOISearch in Google Scholar

Peng, Z., Li., Q., Ouyang, L., Jiang, W., Chen, K., Wang, H., … & Zhu, M. (2022). Overview of Hydrogen Compression Materials Based on a Three-Stage Metal Hydride Hydrogen Compressor. J. Alloys Compd., 895, 162465. doi: 10.1016/j.jallcom.2021.162465. Open DOISearch in Google Scholar

Stamatakis, E., Zoulias, E., Tzamalis, G., & Massina, Z. (2018). Metal Hydride Hydrogen Compressors: Current Developments and Early Markets. Renew. Energy, 127, 850–862. doi: 10.1016/j.renene.2018.04.073. Open DOISearch in Google Scholar

Muthukumar, P., Maiya, M. P., & Murthy, S. S. (2005) Experiments on a Metal Hydride Based Hydrogen Compressor. Int. J. Hydrogen Energy, 30 (8), 879–892. doi: 10.1016/j.ijhydene.2004.09.003. Open DOISearch in Google Scholar

Laurencelle, F., Dehouche, Z., Morin, F., & Goyette, J., (2009). Experimental Study on a Metal Hydride Based Hydrogen Compressor. J. Alloys Compd., 475, (1–2), 810–816. doi: 10.1016/j.jallcom.2008.08.007. Open DOISearch in Google Scholar

Marciuš, D., Kovač, A., & Firak, M. (2022) Electrochemical Hydrogen Compressor: Recent Progress and Challenges. Int. J. Hydrogen Energy, 47 (57), 24179–24193. doi: 10.1016/j.ijhydene.2022.04.134. Open DOISearch in Google Scholar

Bampaou, M., Panopoulos, K. D., Papadopoulos, A. I., Seferlis, P., & Voutetakis, S. (2018). An Electrochemical Hydrogen Compression Model. Chem. Eng. Trans., 70, 1213–1218. doi: 10.3303/CET1870203. Open DOISearch in Google Scholar

Nordio M., Rizzi, F., Manzolini, G., Mulder, M., Raymaker, L., Van Sint Annaland, M., & Gallucci, F. (2018). Experimental and Modelling Study of an Electrochemical Hydrogen Compressor. Chem. Eng. J., 369, 432–442. doi: 10.1016/j.cej.2019.03.106. Open DOISearch in Google Scholar

Stefan, M. (2014). Linde Pioneers Hydrogen Compression Techniques for Fuel Cell Electric Vehicles. Fuel Cells Bulletin, 2014 (9), 12–15. Search in Google Scholar

Ströbel, R., Oszcipok, M., Fasil, M., Rohland, B., Jörissen, L., & Garche, J. (2002). The Compression of Hydrogen in an Electrochemical Cell Based on a PE Fuel Cell Design. J. Power Sources, 105 (2), 208–215. doi: 10.1016/S0378-7753(01)00941-7. Open DOISearch in Google Scholar

Bezrukovs, V., Bezrukovs, V., Konuhova, M., Bezrukovs, D., & Berzins, A. (2022). Hydrogen Hydraulic Compression System for Refuelling Stations. Latv. J. Phys. Tech. Sci., 59 (3), 96–105. doi: 10.2478/lpts-2022-0028. Open DOISearch in Google Scholar

Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Orlova, S., Konuhova, M., Berzins. A., … & Pranskus, P. (2021). Hydrogen Hydraulic Compression Device. PCT/IB2021/058102. Search in Google Scholar

Viktorsson, L., Heinonen, J. T., Skulason, J. B., & Unnthorsson, R. (2017). A Step Towards the Hydrogen Economy - A Life Cycle Cost Analysis of a Hydrogen Refueling Station. Energies, 10 (6), 1–15. doi: 10.3390/en10060763. Open DOISearch in Google Scholar

Tang, O., Rehme, J., & Cerin, P. (2022). Levelized Cost of Hydrogen for Refueling Stations with Solar PV and Wind in Sweden: On-Grid or Off-Grid?,” Energy, 241, 122906. doi: 10.1016/j.energy.2021.122906. Open DOISearch in Google Scholar

Correa, G., Volpe, F., Marocco, P., Muñoz, P., Falagüerra, T., & Santarelli, M. (2022). Evaluation of Levelized Cost of Hydrogen Produced by wind Electrolysis: Argentine and Italian Production Scenarios. J. Energy Storage, 52. doi: 10.1016/j.est.2022.105014. Open DOISearch in Google Scholar

eISSN:
2255-8896
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Fisica, Fisica tecnica ed applicata